Show simple item record

dc.contributor.authorRickard, A. H.
dc.contributor.authorColacino, K. R.
dc.contributor.authorManton, K. M.
dc.contributor.authorMorton, R. I.
dc.contributor.authorPulcini, Elinor D.
dc.contributor.authorPfeil, J.
dc.contributor.authorRhoads, Daniel D.
dc.contributor.authorWolcott, Randall D.
dc.contributor.authorJames, Garth A.
dc.identifier.citationRickard AH, Colacino KR, Manton KM, Morton RI, Pulcini E, Pfeil J, Rhoads D, Wolcott RD, James G, "Production of cell–cell signaling molecules by bacteria isolated from human chronic wounds," Journal of Applied Microbiology, 2010 108(5):1509 –1522en_US
dc.description.abstractAim: To (i) identify chronic wound bacteria and to test their ability to produce acyl-homoserine-lactones (AHLs) and autoinducer-2 (AI-2) cell–cell signalling molecules and (ii) determine whether chronic wound debridement samples might contain these molecules. Methods and Results: Partial 16S rRNA gene sequencing revealed the identity of 46 chronic wound strains belonging to nine genera. Using bio-reporter assays, 69-6% of the chronic wound strains were inferred to produce AI-2, while 19-6% were inferred to produce AHL molecules. At least one strain from every genus, except those belonging to the genera Acinetobacter and Pseudomonas, were indicated to produce AI-2. Production of AI-2 in batch cultures was growth-phase dependent. Cross-feeding assays demonstrated that AHLs were produced by Acinetobacter spp., Pseudomonas aeruginosa and Serratia marcescens. Independent from studies of the bacterial species isolated from wounds, AHL and/or AI-2 signalling molecules were detected in 21 of 30 debridement samples of unknown microbial composition. Conclusion: Chronic wound bacteria produce cell–cell signalling molecules. Based on our findings, we hypothesize that resident species generally produce AI-2 molecules, and aggressive transient species associated with chronic wounds typically produce AHLs. Both these classes of cell–cell signals are indicated to be present in human chronic wounds. Significance and Impact of the Study: Interbacterial cell–cell signalling may be an important factor influencing wound development and if this is the case, the presence of AHLs and AI-2 could be used as a predictor of wound severity. Manipulation of cell–cell signalling may provide a novel strategy for improving wound healing.en_US
dc.titleProduction of cell–cell signaling molecules by bacteria isolated from human chronic woundsen_US
mus.citation.journaltitleJournal of Applied Microbiologyen_US
mus.identifier.categoryChemical & Material Sciencesen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.categoryHealth & Medical Sciencesen_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentCell Biology & Neuroscience.en_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.departmentChemistry & Biochemistry.en_US
mus.relation.departmentHealth & Human Development.en_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.