Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: John C. Priscuen
dc.contributor.authorPatriarche, Jeffrey Dennisen
dc.coverage.spatialBonney, Lake (Antarctica).en
dc.date.accessioned2017-10-10T21:22:22Z
dc.date.available2017-10-10T21:22:22Z
dc.date.issued2017en
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/12803
dc.description.abstractLake Bonney is a hypersaline permanently ice-covered lake in the Taylor Valley, Antarctica that hosts simplified microbial food-webs. Studied since the 1960s, there are many aspects which are poorly understood. Logistical constraints have prevented sampling during the austral winter, a 4-month period of 24-hour darkness. Our knowledge of how the resident photosynthetic microorganisms respond during this period is limited. With inputs from ephemeral glacial-melt streams the lake level (stage) of Bonney has risen more than 3 m since 2004. With no outflow streams, the only known water loss is via ablation of the permanent ice-cover. A study of the spatial and temporal changes in the phytoplankton community structure during this period of rapid lake level rise is lacking. During the summers (November-January) from 2004-05 to 2014-15 an in situ submersible spectrofluorometer was deployed in Lake Bonney to quantify the chlorophyll-a concentrations (microgram L -1) of four functional groups of microalgae (green algae, brown/mixed algae, cryptophytes, cyanobacteria) using known excitation/emission spectra. During the 2013-14 field season this same instrument was mounted on autonomous cable-crawling profilers deployed in both east and west lobes of Lake Bonney, obtaining the first ever daily profiles of chlorophyll-a concentration at an annual scale. Following a summer of rapid lake level rise (2010-11), an increasing trend in depth integrated chlorophyll-a concentration was observed in Lake Bonney. During the same period, the nutrient poor surface water has become increasingly dominated by green algae. Dramatic shifts were also observed in the phytoplankton communities during the polar night. The highest concentrations of mean chlorophyll-a were measured during the 24-hour darkness. Algal spectral groups containing species capable of a mixotrophic metabolism (brown/mixed and cryptophytes) increased in concentration and relative abundance when photosynthetically active radiation was unavailable. This work provides valuable contributions to our knowledge of long-term and year-round phytoplankton community dynamics in Lake Bonney, and improves our understanding of the metabolic strategies employed by organisms in this high latitude permanently ice-covered lake.en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Agricultureen
dc.subject.lcshPhytoplankton.en
dc.subject.lcshSpectrum analysis.en
dc.subject.lcshFluorescence.en
dc.subject.lcshSeasonsen
dc.titleLong-term and over winter phytoplankton community dynamics in Lake Bonney, Antarcticaen
dc.typeThesisen
dc.rights.holderCopyright 2017 by Jeffrey Dennis Patriarcheen
thesis.degree.committeemembersMembers, Graduate Committee: John C. Priscu (chairperson); David Roberts; Wyatt F. Cross.en
thesis.degree.departmentLand Resources & Environmental Sciences.en
thesis.degree.genreThesisen
thesis.degree.nameMSen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage137en
mus.data.thumbpage20en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record