Show simple item record

dc.contributor.authorCarter, Joshua
dc.date.accessioned2017-06-05T17:01:44Z
dc.date.available2017-06-05T17:01:44Z
dc.date.issued2017-04
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/12964
dc.description.abstractGenetic conflict between viruses and their hosts drives evolution and genetic innovation. Prokaryotes evolved CRISPR-mediated adaptive immune systems for protection from viral infection, and viruses have evolved diverse anti-CRISPR (Acr) proteins that subvert these immune systems. The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease for target degradation. Here, we report that the cryo-electron microscopy (cryo-EM) structure of the Csy complex bound to two different Acr proteins, AcrF1 and AcrF2, at an average resolution of 3.4 A ̊. The structure explains the molecular mechanism for immune system suppression, and structure-guided mutations show that the Acr proteins bind to residues essential for crRNA-mediated detection of DNA. Collectively, these data provide a snapshot of an ongoing molecular arms race between viral suppressors and the immune system they target.en_US
dc.language.isoen_USen_US
dc.publisherMontana State Univeristyen_US
dc.titleStructure Reveals Mechanisms of Viral Suppressors that Intercept a CRISPR RNA-Guided Surveillance Complexen_US
dc.typePresentationen_US
mus.citation.conferenceStudent Research Celebrationen_US
mus.citation.extentfirstpage1en_US
mus.citation.extentlastpage1en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentMechanical & Industrial Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record