Show simple item record

dc.contributor.authorForsman, Brittney
dc.description.abstractBacteria and Archaea have adaptive RNA-guided immune systems called CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) that provide protection against invading genetic elements. There are currently five reported CRISPR types comprised of at least nineteen subtypes that encode for a different crRNA-guided surveillance complex. The Type 1-E system of Escherichia coli relies on a surveillance complex called Cascade (CRISPR-Associated Complex for Antiviral Defense) and a nuclease/helicase, Cas3. Similarly, the Type 1-F system of Pseudomonas aeruginosa relies on a surveillance complex called Csy (CRISPR system yersinia) and the trans-acting nuclease, Cas2/3. The Type 1-F system is unique, because it contains a fusion of the Cas2 and Cas3 proteins into a single polypeptide. In most Type 1 systems, Cas2 and Cas3 are separate proteins that are involved in adaptation and interference, respectively. When the surveillance complex of a Type 1 system binds to target DNA, it recruits the nuclease to degrade the invader DNA. My aim is to determine if the Cas2/3 protein from P. aeruginosa can complement the activity of Cas3 from E. coli.en_US
dc.publisherMontana State Univeristyen_US
dc.titleThe Evolution and Mechanisms of Type 1 CRISPR Systemsen_US
mus.citation.conferenceStudent Research Celebrationen_US
mus.relation.collegeCollege of Agricultureen_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.universityMontana State University - Bozemanen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.