Show simple item record

dc.contributor.authorSmith, Heidi J.
dc.contributor.authorSchmit, Amber
dc.contributor.authorFoster, Rachel A.
dc.contributor.authorLittmann, Sten
dc.contributor.authorKuypers, Marcel M. M.
dc.contributor.authorForeman, Christine M.
dc.date.accessioned2017-06-13T18:27:09Z
dc.date.available2017-06-13T18:27:09Z
dc.date.issued2016-06
dc.identifier.citationSmith, H. J., Schmit, A., Foster, R., Littman, S., Kuypers, M. M., & Foreman, C. M. (2016). Biofilms on glacial surfaces: hotspots for biological activity. Npj Biofilms and Microbiomes, 2, 16008. doi:10.1038/npjbiofilms.2016.8en_US
dc.identifier.issn2055-5008
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/13054
dc.description.abstractGlaciers are important constituents in the Earth’s hydrological and carbon cycles, with predicted warming leading to increases in glacial melt and the transport of nutrients to adjacent and downstream aquatic ecosystems. Microbial activity on glacial surfaces has been linked to the biological darkening of cryoconite particles, affecting albedo and increased melt. This phenomenon, however, has only been demonstrated for alpine glaciers and the Greenland Ice Sheet, excluding Antarctica. In this study, we show via confocal laser scanning microscopy that microbial communities on glacial surfaces in Antarctica persist in biofilms. Overall, ~35% of the cryoconite sediment surfaces were covered by biofilm. Nanoscale scale secondary ion mass spectrometry measured significant enrichment of 13C and 15N above background in both Bacteroidetes and filamentous cyanobacteria (i.e., Oscillatoria) when incubated in the presence of 13C–NaHCO3 and 15NH4. This transfer of newly synthesised organic compounds was dependent on the distance of heterotrophic Bacteroidetes from filamentous Oscillatoria. We conclude that the spatial organisation within these biofilms promotes efficient transfer and cycling of nutrients. Further, these results support the hypothesis that biofilm formation leads to the accumulation of organic matter on cryoconite minerals, which could influence the surface albedo of glaciers.en_US
dc.titleBiofilms on glacial surfaces: hotspots for biological activityen_US
dc.typeArticleen_US
mus.citation.extentfirstpage16008en_US
mus.citation.journaltitlenpj Biofilms and Microbiomesen_US
mus.citation.volume2en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1038/npjbiofilms.2016.8en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.departmentLand Resources & Environmental Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.data.thumbpage2en_US
mus.contributor.orcidForeman, Christine M.|0000-0003-0230-4692en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record