Show simple item record

dc.contributor.authorLee, Whonchee
dc.contributor.authorde Beer, Dirk
dc.identifier.citationLee, Whonchee, and Dirk de Beer. “Oxygen and pH Microprofiles Above Corroding Mild Steel Covered with a Biofilm.” Biofouling 8, no. 4 (May 1995): 273–280. doi:10.1080/08927019509378280.en_US
dc.description.abstractO2 and pH microprofiles were measured above corroding mild steel covered with a biofilm. The pH in the anodic areas (tubercles) ranged from 5 to 7 and was always 9.45 at the surface of the cathodic areas. After 1 month of biofilm development, O2 was depleted at the anodic area but could reach the cathodic surface where it was reduced. Consequently, differential O2 concentration cells were the driving force for corrosion. The O2 microprofiles indicated that O2 was consumed in the tubercles, probably by microbial activity, while O2 was reduced electrochemically in the cathodic areas. It was concluded that O2 transfer to the cathodic surface was the rate limiting step for the corrosion process.en_US
dc.titleOxygen and ph microprofiles above corroding mild steel covered with a biofilmen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.contributor.orcidde Beer, Dirk|0000-0001-5274-1781en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.