Show simple item record

dc.contributor.authorPurevdorj-Gage, Boloroo
dc.contributor.authorCosterton, J. William
dc.contributor.authorStoodley, Paul
dc.date.accessioned2017-07-20T14:16:32Z
dc.date.available2017-07-20T14:16:32Z
dc.date.issued2005-05
dc.identifier.citationPurevdorj-Gage B, Costerton JW, Stoodley P, "Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms," Microbiology, 2005 151(5):1569-1576en_US
dc.identifier.issn1350-0872
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/13353
dc.description.abstractThere is growing evidence that Pseudomonas aeruginosa biofilms exhibit a multicellular developmental life cycle analogous to that of the myxobacteria. In non-mucoid PAO1 biofilms cultured in glass flow cells the phenotypic differentiation of microcolonies into a motile phenotype in the interior of the microcolony and a non-motile surrounding 'wall phenotype' are described. After differentiation the interior cells coordinately evacuated the microcolony from local break out points and spread over the wall of the flow cell, suggesting that the specialized microcolonies were analogous to crude fruiting bodies. A microcolony diameter of approximately 80 microns was required for differentiation, suggesting that regulation was related to cell density and mass transfer conditions. This phenomenon was termed 'seeding dispersal' to differentiate it from 'erosion' which is the passive removal of single cells by fluid shear. Using the flow cell culturing method, in which reproducible seeding phenotype in PAO1 wild-type was demonstrated, the effects of quorum sensing (QS) and rhamnolipid production (factors previously identified as important in determining biofilm structure) on seeding dispersal using knockout mutants isogenic with PAO1 was investigated. Rhamnolipid (rhlA) was not required for seeding dispersal but las/rhl QS (PAO1-JP2) was, in our system. To assess the clinical relevance of these data, mucoid P. aeruginosa cystic fibrosis isolate FRD1 was also investigated and was seeding-dispersal-negative.en_US
dc.titlePhenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilmsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage1569en_US
mus.citation.extentlastpage1576en_US
mus.citation.issue5en_US
mus.citation.journaltitleMicrobiologyen_US
mus.citation.volume151en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1099/mic.0.27536-0en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.data.thumbpage4en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record