Montana State University (MSU) Library in Bozeman Montana State University - Home Montana State University Libraries - Home
    • Login
    View Item 
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Bioreduction of natural specular hematite under flow conditions

    Thumbnail
    View/Open
    Published article (836.7Kb)
    Date
    2005-03
    Author
    Gonzalez-Gil, G.
    Amonette, James E.
    Romine, Margaret F.
    Gorby, Yuri A.
    Geesey, Gill G.
    Metadata
    Show full item record
    Abstract
    Dissimilatory reduction of Fe(III) by Shewanella oneidensis MR-1 was evaluated using natural specular hematite as sole electron acceptor in an open system under dynamic flow conditions to obtain a better understanding of biologic Fe(III) reduction in the natural environment. During initial exposure to hematite under advective flow conditions, cells exhibited a transient association with the mineral characterized by a rapid rate of attachment followed by a comparable rate of detachment before entering a phase of surface colonization that was slower but steadier than that observed initially. Accumulation of cells on the hematite surface was accompanied by the release of soluble Fe(II) into the aqueous phase when no precautions were taken to remove amorphous Fe(III) from the mineral surface before colonization. During the period of surface colonization following the detachment phase, cell yield was estimated at 1.5–4 107 cells/µmol Fe(II) produced, which is similar to that reported in studies conducted in closed systems. This yield does not take into account those cells that detached during this phase or the Fe(II) that remained associated with the hematite surface. Hematite reduction by the bacterium led to localized surface pitting and localized discrete areas where Fe (II) precipitation occurred. The cleavage plane of hematite left behind after bacterial reduction, as revealed by our results, strongly suggests, that heterogeneous energetics of the mineral surface play a strong role in this bioprocess. AQDS, an electron shuttle shown to stimulate bioreduction of Fe(III) in other studies, inhibited reduction of hematite by this bacterium under the dynamic flow conditions employed in the current study.
    URI
    https://scholarworks.montana.edu/xmlui/handle/1/13362
    DOI
    10.1016/j.gca.2004.08.014
    Citation
    Gonzalez-Gil G, Amonette JE, Romine MF, Gorby YA, Geesey GG, "Bioreduction of natural specular hematite under flow conditions," Geochim Cosmochim Acta, 2005 69(5):1145-1155
    Collections
    • Scholarly Work - Center for Biofilm Engineering

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
     

     

    Browse

    All of ScholarWorksCommunities & CollectionsBy Issue DateAuthorsTitlesDepartmentsItem TypeThis CollectionBy Issue DateAuthorsTitlesDepartmentsItem Type

    My Account

    Login

    Guidelines & Policies

    AllFor authorsWhy to submitHow to submit

    Statistics

    View Usage Statistics

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback