Show simple item record

dc.contributor.authorGoeres, Darla M.
dc.contributor.authorPalys, T.
dc.contributor.authorSandel, B. B.
dc.contributor.authorGeiger, J.
dc.date.accessioned2017-07-20T17:41:58Z
dc.date.available2017-07-20T17:41:58Z
dc.date.issued2004-07
dc.identifier.citationGoeres DM, Palys T, Sandel BB, Geiger J, "Evaluation of disinfectant efficacy against biofilm and suspended bacteria in a laboratory swimming pool model," Water Res, 2004 38:3103-3109en_US
dc.identifier.issn0043-1354
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/13372
dc.description.abstractLaboratory reactor systems designed to model specific environments enable researchers to explore environmental dynamics in a more controlled manner. This paper describes the design and operation of a reactor system built to model a swimming pool in the laboratory. The model included relevant engineering parameters such as filter loading and turn-overs per day. The water chemistry in the system's bulk water was balanced according to standard recommendations and the system was challenged with a bacterial load and synthetic bather insult, formulated to represent urine and perspiration. The laboratory model was then used to evaluate the efficacy of six chemical treatments against biofilm and planktonic bacteria. Results showed that the biofilm was able to accumulate on coupons and in the filter systems of reactors treated with either 1-3 mg/L free chlorine or 10 mg/L polyhexamethylene biguanide (PHMB). All the treatments tested resulted in at least a 4-log reduction in biofilm density when compared to the control, but shock treatments were the most effective at controlling biofilm accumulation. A once-weekly shock dose of 10 mg/L free chlorine resulted in the greatest log reduction in biofilm density. The research demonstrated the importance of studying a biofilm in addition to the planktonic bacteria to assess the microbial dynamics that exist in a swimming pool model.en_US
dc.titleEvaluation of disinfectant efficacy against biofilm and suspended bacteria in a laboratory swimming pool modelen_US
dc.typeArticleen_US
mus.citation.extentfirstpage3103en_US
mus.citation.extentlastpage3109en_US
mus.citation.issue13en_US
mus.citation.journaltitleWater Researchen_US
mus.citation.volume38en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1016/j.watres.2004.04.041en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.data.thumbpage2en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record