Show simple item record

dc.contributor.authorBorch, Thomas
dc.contributor.authorGerlach, Robin
dc.date.accessioned2017-07-20T21:14:25Z
dc.date.available2017-07-20T21:14:25Z
dc.date.issued2004-01
dc.identifier.citationBorch T, Gerlach R, "Use of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: Influence of temperature and an ion-pair reagent," J Chromotography A, 2004 1022:83-94en_US
dc.identifier.issn0021-9673
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/13394
dc.description.abstractExplosives such as 2,4,6-trinitrotoluene (TNT), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are widely distributed environmental contaminants. Complete chromatographic separation is necessary in order to accurately determine and quantify explosives and their degradation products in environmental samples and in (bio)transformation studies. The present study describes a RP-HPLC method with diode array detection using a LC-8 guard column, a Supelcosil LC-8 chromatographic column, and a gradient elution system. This gradient method is capable of baseline separating the most commonly observed explosives and TNT transformation metabolites including 2,4,6-triaminotoluene (TAT) in a single run. The TNT metabolites separated were 2-hydroxylamino-4,6-dinitrotoluene, 4-hydroxylamino-2,6-dinitrotoluene, 2,4-dihydroxylamino-6-nitrotoluene, 4,4',6,6'-tetranitro-2,2'-azoxytoluene, 2,2',6,6'-tetranitro-4,4'-azoxytoluene, 4,4',6,6'-tetranitro-2,2'-azotoluene, 2,2',6,6'-tetranitro-4,4'-azotoluene, 2-amino-4,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2,6-diamino-4-nitrotoluene, 2,4-diamino-6-nitrotoluene, and TAT. The same gradient method at a different column temperature can also be used to baseline separate the explosives targeted in the Environmental Protection Agency (EPA) Method 8330 with approximately 22% reduction in total run time and 48% decrease in solvent consumption compared to previously published methods. Good separation was also obtained when all TNT metabolites and EPA Method 8330 compounds (a total of 23 compounds) were analyzed together; only 2,6-DANT and HMX co-eluted in this case. The influence of temperature (35B55 C) and the use of an ion-pair reagent on the chromatographic resolution and retention were investigated. Temperature was identified as the key parameter for optimal baseline separation. Increased temperature resulted in shorter retention times and better peak resolution especially for the aminoaromatics investigated. The use of an ion-pair reagent (octanesulfonic acid) generally resulted in longer retention times for compounds containing amine functional groups, more baseline noise, and decreased peak resolution.en_US
dc.titleUse of reversed-phase high-performance liquid chromatography-diode array detection for complete separation of 2,4,6-trinitrotoluene metabolites and EPA Method 8330 explosives: Influence of temperature and an ion-pair reagenten_US
dc.typeArticleen_US
mus.citation.extentfirstpage83en_US
mus.citation.extentlastpage94en_US
mus.citation.issue1-2en_US
mus.citation.journaltitleJournal of Chromatography Aen_US
mus.citation.volume1022en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1016/j.chroma.2003.09.067en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.data.thumbpage84en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record