Montana State University (MSU) Library in Bozeman Montana State University - Home Montana State University Libraries - Home
    • Login
    View Item 
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation

    Thumbnail
    View/Open
    Published article (115.4Kb)
    Date
    2003-12
    Author
    Roberts, M. E.
    Stewart, Philip S.
    Metadata
    Show full item record
    Abstract
    A mathematical model of biofilm dynamics was used to investigate the protection from antibiotic killing that can be afforded to microorganisms in biofilms based on a mechanism of localized nutrient limitation and slow growth. The model assumed that the rate of killing by the antibiotic was directly proportional to the local growth rate. Growth rates in the biofilm were calculated by using the local concentration of a single growth-limiting substrate with Monod kinetics. The concentration profile of this metabolic substrate was calculated by solving a reaction-diffusion problem. The model predicted the following features: stratified patterns of growth with zones of no growth in the biofilm interior, slow killing of biofilm microorganisms that was further retarded as the initial biofilm thickness increased, nonuniform spatial patterns of killing inside the biofilm, biofilm killing rates that decrease in a nonlinear way as the concentration of the growth-limiting substrate feeding the biofilm is decreased, and heightened tolerance when external mass transfer resistance is manifested. This modeling study also provides motivation for further investigation of a hypothetical cell state in which damaged cells score as nonviable but continue to consume substrate. The existence of such a cell state can further retard biofilm killing, according to the simulations. The results support the important contributions of nutrient limitation and slow growth to the antibiotic tolerance of microorganisms in biofilms.
    URI
    https://scholarworks.montana.edu/xmlui/handle/1/13395
    DOI
    10.1128/aac.48.1.48-52.2004
    Citation
    Roberts ME, Stewart PS, "Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation," Antimicrob Agents Chemother, 2004 48(1):48-52
    Collections
    • Scholarly Work - Center for Biofilm Engineering

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
     

     

    Browse

    All of ScholarWorksCommunities & CollectionsBy Issue DateAuthorsTitlesDepartmentsItem TypeThis CollectionBy Issue DateAuthorsTitlesDepartmentsItem Type

    My Account

    Login

    Guidelines & Policies

    AllFor authorsWhy to submitHow to submit

    Statistics

    View Usage Statistics

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback