Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis

Loading...
Thumbnail Image

Date

2003-10

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The mechanical properties of mixed culture biofilms were determined by creep analysis using an AR1000 rotating disk rheometer. The biofilms were grown directly on the rheometer disks which were rotated in a chemostat for 12 d. The resulting biofilms were heterogeneous and ranged from 35 microns to 50 microns in thickness. The creep curves were all viscoelastic in nature. The close agreement between stress and strain ratio of a sample tested at 0.1 and 0.5 Pa suggested that the biofilms were tested in the linear viscoelastic range and supported the use of linear viscoelastic theory in the development of a constitutive law. The experimental data was fit to a 4-element Burger spring and dashpot model. The shear modulus (G) ranged from 0.2 to 24 Pa and the viscous coefficient (eta) from 10 to 3000 Pa. These values were in the same range as those previously estimated from fluid shear deformation of biofilms in flow cells. A viscoelastic biofilm model will help to predict shear related biofilm phenomena such as elevated pressure drop, detachment, and the flow of biofilms over solid surfaces.

Description

Keywords

Citation

Towler, B.W., C.J. Rupp, A.B. Cunningham and P. Stoodley, "Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis," Biofouling, 19(5):279-285 (2003).
Copyright (c) 2002-2022, LYRASIS. All rights reserved.