Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Warren Jonesen
dc.contributor.authorGrabinski, Kevin Johnen
dc.description.abstractDrinking water distribution systems pose the potential to transport biological and chemical contaminants to the consumers' tap that can be responsible for widespread waterborne disease outbreaks (WBDO). A need exists to improve the ability to monitor contaminants that can attach to the distribution system's interior surfaces and to obtain samples for diagnosing both the cause of a WBDO and the extent of contamination within the system. In this study, a porous media reactor colonized with a mixed-species drinking water biofilm was used to study the capture of Salmonella typhimurium as a model pathogen. Parallel reactors were operated under constant flow (CF) and constant head (CH) to compare flow-regime induced spatial variations in biofilm accumulation and the resulting pathogen capture. Parallel test reactors were operated with 0.5 mg/L supplemental carbon until the accumulation of biofilm in the CH reactor reduced the flowrate to the target sampling point (CF flowrate). Both test reactors were then inoculated with slug doses of approximately 3x109 CFU S. typhimurium. Effluent water samples were collected for five pore-volumes, followed by the destructive sampling of the reactor.en
dc.description.abstractPlate counts were used to enumerate S. typhimurium present in effluent samples and captured within the reactor. Cell counts in effluent samples displayed an accelerated breakthrough compared with a non-reactive tracer. Compared with uncolonized control reactors (0.13%), colonized reactors (0.96%) captured significantly more cells. Despite spatial variations in biofilm accumulation, colonized CH and CF reactors captured comparable amounts of S. typhimurium. Increasing sampling duration to twenty pore volumes demonstrated greater retention of captured cells in the colonized reactors over the control reactors. S. typhimurium transport and capture was also observed in a 0.9 mm square flowcell packed with 100 mm beads using a confocal microscope. Interception and straining were responsible for capture on clean beads while biofilm accumulation narrowed pore throats sufficiently to allow for mechanical filtration to occur. This study demonstrates that using biofilm colonized porous media may be an effective tool to capture pathogens for monitoring drinking water distribution systems.en
dc.publisherMontana State University - Bozeman, College of Engineeringen
dc.subject.lcshBacterial diseases--Pathogenesisen
dc.subject.lcshBiological transporten
dc.subject.lcshPorous materialsen
dc.titlePathogen transport and capture in a porous media biofilm reactoren
dc.rights.holderCopyright 2007 by Kevin John Grabinskien
thesis.catalog.ckey1290679en, Graduate Committee: Al Cunningham; Anne Camperen Engineering.en

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.