Montana State University (MSU) Library in Bozeman Montana State University - Home Montana State University Libraries - Home
    • Login
    View Item 
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by Desulfovibrio vulgaris Hildenborough.

    Thumbnail
    View/Open
    Published article (1.448Mb)
    Date
    2017-10
    Author
    De Leon, K. B.
    Zane, Grant M.
    Trotter, V. V.
    Krantz, Gregory
    Arkin, A. P.
    Butland, G. P.
    Walian, P. J.
    Fields, Matthew W.
    Wall, Judy D.
    Metadata
    Show full item record
    Abstract
    Biofilms of sulfate-reducing bacteria (SRB) are of particular interest as members of this group are culprits in corrosion of industrial metal and concrete pipelines as well as being key players in subsurface metal cycling. Yet the mechanism of biofilm formation by these bacteria has not been determined. Here we show that two supposedly identical wild-type cultures of the SRB Desulfovibrio vulgaris Hildenborough maintained in different laboratories have diverged in biofilm formation. From genome resequencing and subsequent mutant analyses, we discovered that a single nucleotide change within DVU1017, the ABC transporter of a type I secretion system (T1SS), was sufficient to eliminate biofilm formation in D. vulgaris Hildenborough. Two T1SS cargo proteins were identified as likely biofilm structural proteins, and the presence of at least one (with either being sufficient) was shown to be required for biofilm formation. Antibodies specific to these biofilm structural proteins confirmed that DVU1017, and thus the T1SS, is essential for localization of these adhesion proteins on the cell surface. We propose that DVU1017 is a member of the lapB category of microbial surface proteins because of its phenotypic similarity to the adhesin export system described for biofilm formation in the environmental pseudomonads. These findings have led to the identification of two functions required for biofilm formation in D. vulgaris Hildenborough and focus attention on the importance of monitoring laboratory-driven evolution, as phenotypes as fundamental as biofilm formation can be altered.
    URI
    https://scholarworks.montana.edu/xmlui/handle/1/14161
    DOI
    10.1128/mBio.01696-17
    Citation
    De León KB, G.M. Zane, V.V. Trotter, Greg P. Krantz, A.P. Arkin, G.P. Butland, P.J. Walian, Matthew W. Fields, J.D. Wall, “Unintended Laboratory-Driven Evolution Reveals Genetic Requirements for Biofilm Formation by Desulfovibrio vulgaris Hildenborough,” MBio 8, no. 6 (October 17, 2017):e01696-17. doi: 10.1128/mBio.01696-17.
    Collections
    • Scholarly Work - Center for Biofilm Engineering

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
     

     

    Browse

    All of ScholarWorksCommunities & CollectionsBy Issue DateAuthorsTitlesDepartmentsItem TypeThis CollectionBy Issue DateAuthorsTitlesDepartmentsItem Type

    My Account

    Login

    Guidelines & Policies

    AllFor authorsWhy to submitHow to submit

    Statistics

    View Usage Statistics

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback