Montana State University (MSU) Library in Bozeman Montana State University - Home Montana State University Libraries - Home
    • Login
    View Item 
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Effect of biofilms on crevice corrosion of stainless steels in coastal seawater

    Thumbnail
    View/Open
    Published article (141.8Kb)
    Date
    1995-01
    Author
    Zhang, H.-J.
    Dexter, Stephen C.
    Metadata
    Show full item record
    Abstract
    The effect of biofilms on crevice corrosion of stainless steels (SS) UNS S31603 (type 316L SS), S31725 (type 317LM SS), N08904 (type 904L SS), and N08367 (6XN) in coastal seawater was investigated using the remote crevice assembly technique. One set of naturally initiated tests and one set of preinitiated tests were performed. For UNS N08367, anodes in natural initiation tests did not corrode, while preinitiated corrosion did not propagate in natural or control seawater. Biofilms did not significantly affect initiation times for UNS S31603 and S31725, while for the corroded samples of UNS N08904, biofilms significantly decreased crevice corrosion initiation times. Biofilms greatly increased the propagation rate for UNS S31603, S31725, and N08904, as measured by maximum and average depths of attack, weight loss, and current density. Theoretical weight losses (WT) calculated using Faraday's law and the measured current densities were in good agreement with the measured weight losses (Wm). For anodes in preinitiated tests, current densities calculated from cathodic polarization curves also were in good agreement with the measured current densities. The increased propagation rate of crevice corrosion was caused by an increase in the cathodic reaction rate, which was due to the action of biofilms. Effective control conditions were achieved in the long-term tests by a combination of heat treating the water at 80°C before exposure and periodically exchanging the cathode panels after 1 h of immersion in fresh water at 60°C.
    URI
    https://scholarworks.montana.edu/xmlui/handle/1/14209
    DOI
    10.5006/1.3293578
    Citation
    Zhang, H.-J. and S.C. Dexter, "Effect of Biofilms on Crevice Corrosion of Stainless Steels in Coastal Seawater," Corrosion, 51(1):56-66 (1995).
    Collections
    • Scholarly Work - Center for Biofilm Engineering

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
     

     

    Browse

    All of ScholarWorksCommunities & CollectionsBy Issue DateAuthorsTitlesDepartmentsItem TypeThis CollectionBy Issue DateAuthorsTitlesDepartmentsItem Type

    My Account

    Login

    Guidelines & Policies

    AllFor authorsWhy to submitHow to submit

    Statistics

    View Usage Statistics

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback