Montana State University (MSU) Library in Bozeman Montana State University - Home Montana State University Libraries - Home
    • Login
    View Item 
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Engineering
    • Center for Biofilm Engineering (CBE)
    • Scholarly Work - Center for Biofilm Engineering
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Recombinant plasmid retention and expression in bacterial biofilm cultures

    Thumbnail
    View/Open
    Published article (1004.Kb)
    Date
    1995
    Author
    Bryers, James D.
    Huang, Ching-Tsan
    Metadata
    Show full item record
    Abstract
    Any exposure of plasmid recombinant microorganisms to an open system environment, either inadvertently or intentionally, mandates research into those fundamental organism:plasmid processes that influence plasmid retention, transfer and expression. In open environmental systems a majority of the microbial activity occurs associated with an interface, within thin biological layers consisting of the cells and their insoluble extracellular polymer, layers known as biofilms. Thus any study regarding the fate of recombinant DNA sequences in an open system must consider processes that affect plasmid retention and expression in a biofilm culture. Biofilm cultures were cultivated in a parallel-plate flow cell reactor using E. coli DH5α which contained a recombinant plasmid with a plasmid stability factor, parB, (pTKW106) or without (pMJR1750). Using β-galactosidase as inducible reporter protein, plasmid retention and gene expression of pMJR1750 and pTKW106, in suspended versus biofilm cultures, were studied under different carbo to nitrogen ratios and plasmid induction levels. Recombinant biofilm formation under these environmental conditions was also investigated. Biofilm net accumulation rate of E. coli DH5α (pTKW106) decreases with increasing induction levels. The β-galactosidase production and ratios of β-galactosidase to total protein increase with increasing induction levels. Synthesis rates of total RNA, β-galactosidase mRNA and rRNA in biofilm cultures of E. coli DH5α (pTKW106) increase after induction by IPTG.
    URI
    https://scholarworks.montana.edu/xmlui/handle/1/14215
    DOI
    10.1016/0273-1223(95)00159-k
    Citation
    Bryers, J.D. and C.-T. Huang, "Recombinant Plasmid Retention and Expression in Bacterial Biofilm Cultures," Water Sci. Technol., 31(1):105-115 (1995).
    Collections
    • Scholarly Work - Center for Biofilm Engineering

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
     

     

    Browse

    All of ScholarWorksCommunities & CollectionsBy Issue DateAuthorsTitlesDepartmentsItem TypeThis CollectionBy Issue DateAuthorsTitlesDepartmentsItem Type

    My Account

    Login

    Guidelines & Policies

    AllFor authorsWhy to submitHow to submit

    Statistics

    View Usage Statistics

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback