Show simple item record

dc.contributor.authorWanner, O.
dc.contributor.authorCunningham, Alfred B.
dc.contributor.authorLundman, Ross Wade
dc.identifier.citationWanner, O., A. B. Cunningham, and R. Lundman. “Modeling Biofilm Accumulation and Mass Transport in a Porous Medium Under High Substrate Loading.” Biotechnology and Bioengineering 47, no. 6 (September 20, 1995): 703–712. doi:10.1002/bit.260470611.en_US
dc.description.abstractA packed bed biofilm reactor inoculated with pure culture Pseudomonas aeruginosa was run under high substrate loading and constant flow rate conditions. The 3.1-cm-diameter cylindrical reactor was 5 cm in length and packed with 1-mm glass beads. Daily observations of biofilm thickness, influent and effluent glucose substrate concentration, and effluent dissolved and total organic carbon were made during the 13-day experiment. Biofilm thickness appeared to rech quasi-steady-state condition after 10 days. A published biofilm process simulation program (AQUASIM) was used to analyze experimental data. Comparison of observed and simulated variables revealed three distinct phases of biofilm accumulation during the experiment: an initial phase, a growth phase, and a mature biofilm phase. Different combinations of biofilm and mass transport process variables were found to be important during each phase. Biofilm detachment was highly correlated with shear at the biofilm surface during all three phases of biofilm development.en_US
dc.titleModeling biofilm accumulation and mass transport in a porous medium under high substrate loadingen_US
mus.citation.journaltitleBiotechnology and Bioengineeringen_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentChemical Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.