Scaling nitrogen retention from trees to forests through succession

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Agriculture

Abstract

We seek to understand how the ability of trees to acquire and retain nitrogen (N) changes throughout their lifetimes. This capacity enables trees to act as carbon (C) sinks individually and collectively in forest ecosystems over successional time scales. We evaluate how properties that govern nutrient retention change with tree size and forest age, and how allometric relationships scale up to influence ecosystem-level patterns of N cycling and retention. Most generally, we hypothesized that changes in N uptake and recycling efficiency with increasing tree size would vary with forest age and N availability. Additionally, we evaluated changes in ecosystem-level C and N accumulation throughout secondary forest succession following clear-cut logging disturbances in an effort to understand how N limitation may become expressed over time and interact with forest successional dynamics. Our findings highlight the importance of large trees in ecosystem N cycling and growth. We find that increasing mass growth rates are matched by an increasing capacity to acquire and retain N without necessitating increases in growth efficiency. Research findings indicate that mortality of single trees may hold profound consequences for stand-level N retention in addition to C storage. At the ecosystem scale, we find N accumulation and limitation are dynamic processes that fluctuate in strength and source over forest succession, and that ecosystem accumulation of N was driven predominately by increasing N in plant biomass rather than in soil pools.

Description

Keywords

Citation

Copyright (c) 2002-2022, LYRASIS. All rights reserved.