Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Tomas Gedeonen
dc.contributor.authorHayes, Christina Savannah Mariaen
dc.date.accessioned2013-06-25T18:38:49Z
dc.date.available2013-06-25T18:38:49Z
dc.date.issued2006en
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/1448en
dc.description.abstractThe infinite population model for the genetic algorithm, where the iteration of the genetic algorithm corresponds to an iteration of a map G, is a discrete dynamical system. The map G is a composition of a selection operator and a mixing operator, where the latter models the effects of both mutation and crossover. This dissertation examines the finiteness and hyperbolicity of fixed points of this model. For a typical mixing operator, the fixed point set of G is finite and all fixed points are hyperbolic.en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Letters & Scienceen
dc.subject.lcshGenetic algorithms.en
dc.titleGeneric properties of the infinite population genetic algorithmen
dc.typeDissertationen
dc.rights.holderCopyright 2006 by Christina Savannah Maria Hayesen
thesis.catalog.ckey1203591en
thesis.degree.committeemembersMembers, Graduate Committee: Marcy Barge; John Paxton; Richard Swanson; Richard Gilletteen
thesis.degree.departmentMathematical Sciences.en
thesis.degree.genreDissertationen
thesis.degree.namePhDen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage108en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record