Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Damon Fick; Adrienne Philips (co-chair)en
dc.contributor.authorBeser, Guneycan Dicleen
dc.description.abstractNovel methods are needed to prevent or mitigate subsurface fluid leakage, for example stored carbon dioxide, fuels during unconventional oil and gas resource development or nuclear waste disposal. Ureolysis-induced calcium carbonate precipitation (UICP) has been investigated as a method to plug leakage pathways in the near-wellbore environment and in fractures. The enzyme urease catalyzes the hydrolysis of urea to react with calcium to form solid calcium carbonate (similar to limestone). UICP test specimens were prepared in triplicate by filling 2.5 cm (diameter) x 5 cm (length) and 5 cm x 10 cm cylindrical molds with sand and injecting both microbial and plant-based enzymes with urea and calcium solutions to promote precipitation. Sources of urease included jack bean enzyme and S. pasteurii microbe, resulting in both enzyme and microbe induced calcite precipitation (EICP, MICP) specimens. For comparison, Class H well- and Type I-Portland specimens were made by mixing cement paste (API 10B) with sand (ASTM C305). Fine cement specimens were also included in the comparison and were made both by mixing and also injecting to match the process used to make the biocement specimens. For the 2.5 cm x 5 cm specimens, the addition of nutrient broth to the enzyme specimens (ENICP) resulted in increased compression strengths compared with specimens without nutrient (EICP). The average compression strengths of these ENICP specimens reached 77% and 66% of the compressive strength of the 28-day well cement and Type I cement mortars, respectively and were over two times larger than the 28-day strength of the fine cement specimens. For 5 cm x 10 cm specimens, compression strengths of MICP, ENICP, and EICP specimens reached 42%, 38%, and 16% of the 28-day injected fine cement specimens. The average modulus of elasticity of ENICP was 17,316 + or = 1,430 MPa with 8.3 + or = 1.8% CaCO3 content (g/g sand) and was approximately 30% larger than the average modulus measured for the fine cement specimens. The results of this study indicate that the UICP produced specimens may have adequate strength and stiffness for field applications.en
dc.publisherMontana State University - Bozeman, College of Engineeringen
dc.subject.lcshCements, Adhesiveen
dc.subject.lcshGas wellsen
dc.subject.lcshPrecipitation (Chemistry)en
dc.titleUreolysis induced mineral precipitation material properties compared to oil and gas well cementsen
dc.rights.holderCopyright 2018 by Guneycan Dicle Beseren, Graduate Committee: Jerry Stephens; Joel Cahoon.en Engineering.en

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.