Show simple item record

dc.contributor.authorJames, Garth A.
dc.contributor.authorBoegli, Laura
dc.contributor.authorHancock, John
dc.contributor.authorBowersock, Lisa B.
dc.contributor.authorParker, Albert E.
dc.contributor.authorKinney, Brian M.
dc.date.accessioned2019-04-16T17:38:44Z
dc.date.available2019-04-16T17:38:44Z
dc.date.issued2019-04
dc.identifier.citationJames, Garth A., Laura Boegli, John Hancock, Lisa Bowersock, Albert E. Parker, Brian M. Kinney, “Bacterial Adhesion and Biofilm Formation on Textured Breast Implant Shell Materials,” Aesthetic Plastic Surgery, 2019 April, 43(2):490-497.en_US
dc.identifier.issn1432-5241
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/15436
dc.description.abstract"Background Bacterial biofilms have been implicated with breast implant complications including capsular contracture and anaplastic large-cell lymphoma. The actual mechanisms for either are still under active investigation and are not clear. Due to their increased surface area, implants with textured surfaces may harbor greater biofilm loads than those with smooth surfaces. Methods Biofilm formation on the outer surface material was compared using implants with various surface areas and roughness, including Natrelle® (Smooth), SmoothSilk®/SilkSurface® (Silk), VelvetSurface ® (Velvet), Siltex®, and Biocell®. The roughness and surface area of each material were assessed using non-contact profilometry. Bacterial attachment (2 h) and biofilm formation (24 h) were evaluated for Staphylococcus epidermidis, Pseudomonas aeruginosa, and Ralstonia pickettii over nine independent experiments using a CDC biofilm reactor and viable plate counts (VPCs) as well as confocal scanning laser microscopy. VPCs of the textured implants were compared relative to the Smooth implant. Results Surface areas increased with roughness and were similar among the three least rough implants (Smooth, Silk, and Velvet) and among the roughest implants (Siltex and Biocell). Overall, VPC indicated there was significantly more bacterial attachment and biofilm formation on the Siltex and Biocell implants than the Silk or Velvet implants, although there were differences between species and time points. CSLM confirmed the formation of thicker biofilms on the implants with rougher surface textures. Conclusion This in vitro study confirmed that implant surfaces with rougher texture, resulting in more surface area, harbored greater biofilm loads than those with smoother surfaces.en_US
dc.language.isoenen_US
dc.rightsCC BY: This license lets you distribute, remix, tweak, and build upon this work, even commercially, as long as you credit the original creator for this work. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/legalcodeen_US
dc.titleBacterial Adhesion and Biofilm Formation on Textured Breast Implant Shell Materialsen_US
dc.typeArticleen_US
mus.citation.extentfirstpage490en_US
mus.citation.extentlastpage497en_US
mus.citation.issue2en_US
mus.citation.journaltitleAesthetic Plastic Surgeryen_US
mus.citation.volume43en_US
mus.identifier.categoryEngineering & Computer Scienceen_US
mus.identifier.doi10.1007/s00266-018-1234-7en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US
mus.data.thumbpage6en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY: This license lets you distribute, remix, tweak, and build upon this work, even commercially, as long as you credit the original creator for this work. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.
Except where otherwise noted, this item's license is described as CC BY: This license lets you distribute, remix, tweak, and build upon this work, even commercially, as long as you credit the original creator for this work. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.