Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Roberta Amendolaen
dc.contributor.authorMcCleary, Madisen Wynnen
dc.contributor.otherRoberta Amendola was a co-author of the article, 'Effect of aluminum titanate (Al 2TiO 5) doping on the mechanical performance of solid oxide fuel cell Ni-YSZ anode' in the journal 'Fuel Cells' which is contained within this thesis.en
dc.contributor.otherRoberta Amendola was a co-author of the article, 'Investigation of the kinetics of the solid-state reduction process of undoped and aluminum titanate (Al 2TiO 5) doped NiO-YSZ anodes for solid oxide fuel cells' in the journal 'Ceramics international' which is contained within this thesis.en
dc.contributor.otherRoberta Amendola, Stephen Walsh and Benjamin McHugh were co-authors of the article, 'Analysis of the mechanical strength and failure mode of undoped and aluminum titanate (Al 2TiO 5, ALT) doped-Ni-YSZ solid oxide fuel cell anodes under uniaxial and biaxial strength testing conditions' submitted to the journal 'Materialia' which is contained within this thesis.en
dc.contributor.otherRoberta Amendola and Benjamin McHugh were co-authors of the article, 'Effect of redox cycling on the mechanical performance of undoped and aluminum titanate (Al 2TiO 5, ALT) doped NiO-YSZ solid oxide fuel cell anodes' which is contained within this thesis.en
dc.contributor.otherRoberta Amendola was a co-author of the article, 'Mechanical performance of aluminum titanate (Al 2TiO 5, ALT) doped NiO-YSZ SOFC half cells' which is contained within this thesis.en
dc.date.accessioned2020-02-06T16:40:40Z
dc.date.available2020-02-06T16:40:40Z
dc.date.issued2019en
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/15578en
dc.description.abstractRecently, there has been growing interest in anode supported Solid Oxide Fuel Cells (SOFCs) because of improved single cell performance. In these systems, the anode layer is the thickest and provides the mechanical strength of the stack. Nickel-yttria stabilized zirconia (Ni-YSZ) composites are widely used as anode material but, in contrast to the vast amount of data available on their electrochemical properties, little data on the mechanical performance exists. This dissertation work focuses on the use of secondary materials added to traditional Ni-YSZ anodes to enhance SOFC anode mechanical performance. Small amounts of, aluminum titanate (Al2TiO5, ALT), added to the NiO-YSZ system during the manufacturing process, results in a material that is over 50% stronger than the native Ni-YSZ. Samples with different geometries have been fabricated and tested in uniaxial and biaxial strength testing apparatuses. Advanced microscopy techniques and Weibull statistical analyses have been used to properly characterize the mechanical performance, the failure mechanism and to elucidate chemical compositions. This work has found that the enhanced strength resulting from ALT is related to the development of secondary phases: Al2O3 reacts with NiO to form NiAl2O4 while TiO2 preferentially reacts with YSZ to form a solid YSZ framework defined as the 'rough phase' that add stiffness to the system and persists upon reduction. The mechanical behavior of reduced samples has been related to the partial reduction of NiAl2O4 which results in the formation of Ni nanoparticles within an Al2O3 matrix ('small particle phase'). This phase is characterized by a high strength interface while adding ductility and crack deflection ability to the system. ALT was also found responsible for changing the Ni-YSZ system failure mechanism from an intergranular to a transgranular fashion indicating the material toughness increased. During cyclic operational testing, ALT has potential for mechanical stabilization through porosity development with secondary phase formation. Testing of ALT anodes with YSZ electrolyte material showed increased strength over similar native assemblies. This dissertation work lays the foundation for future research into the effects of ALT doping on the SOFC system and how this material could be tailored for even further increases in strength.en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, The Graduate Schoolen
dc.subject.lcshSolid oxide fuel cellsen
dc.subject.lcshComposite materialsen
dc.subject.lcshFracture mechanicsen
dc.subject.lcshTitanatesen
dc.subject.lcshElectrodesen
dc.titleInvestigation of the mechanical properties of aluminum titanate (Al 2TiO 5) doped NI-YSZ solid oxide fuel cell anodesen
dc.typeDissertationen
dc.rights.holderCopyright 2019 by Madisen Wynn McClearyen
thesis.degree.committeemembersMembers, Graduate Committee: Stephen W. Sofie; Paul E. Gannon; Jack L. Skinner; Robert Walker.en
thesis.degree.departmentMechanical & Industrial Engineering.en
thesis.degree.genreDissertationen
thesis.degree.namePhDen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage273en
mus.data.thumbpage15en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.