Show simple item record

dc.contributor.authorAl-kaby, Rehab N.
dc.contributor.authorCodd, Sarah L.
dc.contributor.authorSeymour, Joseph D.
dc.contributor.authorBrown, Jennifer R.
dc.date.accessioned2020-11-12T04:08:03Z
dc.date.available2020-11-12T04:08:03Z
dc.date.issued2020-04
dc.identifier.citationAl-kaby Rehab N., Sarah L. Codd, Joseph D. Seymour, and Jennifer R. Brown. “Characterization of Velocity Fluctuations and the Transition from Transient to Steady State Shear Banding with and Without Pre-Shear in a Wormlike Micelle Solution Under Shear Startup by Rheo-NMR.” Applied Rheology 30, no. 1 (April 6, 2020): 1–13. doi:10.1515/arh-2020-0001.en_US
dc.identifier.issn1617-8106
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/16016
dc.description.abstractRheo-NMR velocimetry was used to study shear banding of a 6 wt.% cetylpyridinium chloride (CPCl) worm-like micelle solution under shear startup conditions with and without pre-shear. 1D velocity profiles across the fluid gap of a concentric cylinder Couette shear cell were measured every 1 s following shear startup for four different applied shear rates within the stress plateau. Fitting of the velocity profiles allowed calculation of the shear banding characteristics (shear rates in the high and low shear band, the interface position and apparent slip at the inner rotating wall) as the flow transitioned from transient to steady state regimes. Characteristic timescales to reach steady state were obtained and found to be similar for all shear banding characteristics. Timescales decreased with increasing applied shear rate. Large temporal fluctuations with time were also observed and Fourier transform of the time and velocity autocorrelation functions quantified the fluctuation frequencies. Frequencies corresponded to the elastically driven hydrodynamic instabilities, i.e. vortices, that are known to occur in the unstable high shear band and were dependent upon both applied shear rate and the pre-shear protocol.en_US
dc.language.isoen_USen_US
dc.rights© This manuscript version is made available under the CC-BY 4.0 licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0en_US
dc.titleCharacterization of velocity fluctuations and the transition from transient to steady state shear banding with and without pre-shear in a wormlike micelle solution under shear startup by Rheo-NMRen_US
dc.typeArticleen_US
mus.citation.issue1en_US
mus.citation.journaltitleApplied Rheologyen_US
mus.citation.volume30en_US
mus.identifier.doi10.1515/arh-2020-0001en_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentMechanical & Industrial Engineering.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.data.thumbpage4en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© This manuscript version is made available under the CC-BY 4.0 license
Except where otherwise noted, this item's license is described as © This manuscript version is made available under the CC-BY 4.0 license