Light-Driven Permanent Charge Separation across a Hybrid Zero-Dimensional/Two-Dimensional Interface

Abstract

We report the first demonstration of light-driven permanent charge separation across an ultrathin solid-state zero-dimensional (0D)/2D hybrid interface by coupling photoactive Sn-doped In2O3 nanocrystals with monolayer MoS2, the latter serving as a hole collector. We demonstrate that the nanocrystals in this device-ready architecture act as local light-controlled charge sources by quasi-permanently donating ∼5 holes per nanocrystal to the monolayer MoS2. The amount of photoinduced contactless charge transfer to the monolayer MoS2 competes with what is reached in electrostatically gated devices. Thus, we have constructed a hybrid bilayer structure in which the electrons and holes are separated into two different solid-state materials. The temporal evolution of the local doping levels of the monolayer MoS2 follows a capacitive charging model with effective total capacitances in the femtofarad regime and areal capacitances in the μF cm–2 range. This analysis indicates that the 0D/2D hybrid system may be able to store light energy at densities of at least μJ cm–2, presenting new potential foundational building blocks for next-generation nanodevices that can remotely control local charge density, power miniaturized circuitry, and harvest and store optical energy.

Description

Keywords

Citation

Kriegel, Ilka, Michele Ghini, Sebastiano Bellani, Kehao Zhang, Adam W. Jansons, Brandon M. Crockett, Kristopher M. Koskela, et al. “Light-Driven Permanent Charge Separation Across a Hybrid Zero-Dimensional/Two-Dimensional Interface.” The Journal of Physical Chemistry C 124, no. 14 (March 16, 2020): 8000–8007. doi:10.1021/acs.jpcc.0c01147.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.