Show simple item record

dc.contributor.authorWalsh, Danica J.
dc.contributor.authorLivinghouse, Tom
dc.contributor.authorDurling, Greg M.
dc.contributor.authorChase-Bayless, Yenny
dc.contributor.authorArnold, Adrienne D.
dc.contributor.authorStewart, Philip S.
dc.identifier.citationWalsh, D. J., Livinghouse, T., Durling, G. M., Chase-Bayless, Y., Arnold, A. D., & Stewart, P. S. (2020). Sulfenate esters of simple phenols exhibit enhanced activity against biofilms. ACS omega, 5(11), 6010-6020.en_US
dc.description.abstractThe recalcitrance exhibited by microbial biofilms to conventional disinfectants has motivated the development of new chemical strategies to control and eradicate biofilms. The activities of several small phenolic compounds and their trichloromethylsulfenyl ester derivatives were evaluated against planktonic cells and mature biofilms of Staphylococcus epidermidis and Pseudomonas aeruginosa. Some of the phenolic parent compounds are well-studied constituents of plant essential oils, for example, eugenol, menthol, carvacrol, and thymol. The potency of sulfenate ester derivatives was markedly and consistently increased toward both planktonic cells and biofilms. The mean fold difference between the parent and derivative minimum inhibitory concentration against planktonic cells was 44 for S. epidermidis and 16 for P. aeruginosa. The mean fold difference between the parent and derivative biofilm eradication concentration for 22 tested compounds against both S. epidermidis and P. aeruginosa was 3. This work demonstrates the possibilities of a new class of biofilm-targeting disinfectants deploying a sulfenate ester functional group to increase the antimicrobial potency toward microorganisms in biofilms.en_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsThis is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.en_US
dc.titleSulfenate Esters of Simple Phenols Exhibit Enhanced Activity against Biofilmsen_US
mus.citation.journaltitleACS Omegaen_US
mus.relation.collegeCollege of Engineeringen_US
mus.relation.departmentCenter for Biofilm Engineering.en_US
mus.relation.departmentChemical & Biological Engineering.en_US
mus.relation.departmentMicrobiology & Cell Biology.en_US
mus.relation.universityMontana State University - Bozemanen_US
mus.relation.researchgroupCenter for Biofilm Engineering.en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.