Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Perry Miller.en
dc.contributor.authorO'Dea, Justin Kevinen
dc.contributor.otherPerry R. Miller and Clain A. Jones were co-authors of the article, 'Greening summer fallow with legume green manures: on-farm assessment in North-Central Montana' in the journal 'Journal of Soil and Water Conservation' which is contained within this thesis.en
dc.contributor.otherClain A. Jones, Catherine A. Zabinski, Ilai N. Keren and Perry R. Miller were co-authors of the article, 'Legume, cropping intensity, and N-fertilization effects on attributes and processes in soils from an eight-year-old semiarid wheat system' in the journal 'Plant and Soil' which is contained within this thesis.en
dc.description.abstractAdopting nitrogen (N)-fixing legumes into crop rotations is an accessible, ecological practice capable of increasing agricultural sustainability. Nonetheless, in northern Great Plains (NGP) wheat systems, proper water use management and the realization of N benefits are barriers to legumes replacing summer fallow. Legumes should also be able to mitigate legacies of soil organic matter losses from summer fallow. We conducted a participatory field-scale study in north-central Montana, assessing the viability of no-till, early-terminated legume green manures (LGMs) as summer fallow replacements. Soil water and nitrogen were measured to evaluate LGM effects on subsequent wheat crops. Farmers were interviewed to elucidate perspectives and challenges of adopting LGMs. Compared to fallow, LGMs depressed subsequent wheat yields by 6% (0.24 Mg ha -¹), and lowered grain protein at sites where wheat was fertilized with N (9 g kg -¹); grain protein was increased at unfertilized sites (5 g kg -¹). Absent rotational benefits from LGMs were attributed to dry conditions in the LGM year leading to low LGM biomass N and reduced N mineralization potential in soils, rather than soil water limitation to subsequent wheat. Farmers were curious about possible longterm benefits from LGMs, but expressed that the economic viability of LGMs appeared tenuous in the short-term. We also examined attributes and processes in soils from an eight-year-old rotation study containing fallow-wheat, continuous wheat, and legume-inclusive no-till rotations. We examined potentially mineralizable C and N (PMC and PMN), microbial biomass-C and wet aggregate stability (WAS). Nitrogen fertilizer was also added to a duplicate set of soils, and effects on C and N mineralization were evaluated. Legume-inclusive systems generally had higher levels of soil parameters, and had 26-50% greater PMN than wheat-only systems. Systems returning the most crop residue C to the soils had higher WAS regardless of legumes. Nitrogen additions depressed C and N mineralization. Results of these studies suggest that in NGP agroecosystems, LGMs can avoid limiting soil water available to subsequent wheat when terminated early and managed as no-till crops, but that legumes should be viewed as an investment in soil quality which may precipitate rotational N benefits more reliably after three or more appearances in rotation.en
dc.publisherMontana State University - Bozeman, College of Agricultureen
dc.subject.lcshDry farmingen
dc.subject.lcshField cropsen
dc.titleGreening summer fallow : agronomic and edaphic implications of legumes in dryland wheat agroecosystemsen
dc.rights.holderCopyright 2011 by Justin Kevin O'Deaen
thesis.catalog.ckey1802607en, Graduate Committee: Clain Jones; Catherine A. Zabinskien Resources & Environmental Sciences.en
mus.relation.departmentLand Resources & Environmental Sciences.en_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.