Montana State University (MSU) Library in Bozeman Montana State University - Home Montana State University Libraries - Home
    • Login
    View Item 
    •   ScholarWorks Home
    • Scholarship & Research
    • Theses and Dissertations at Montana State University (MSU)
    • Theses and Dissertations at Montana State University (MSU)
    • View Item
    •   ScholarWorks Home
    • Scholarship & Research
    • Theses and Dissertations at Montana State University (MSU)
    • Theses and Dissertations at Montana State University (MSU)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structure based mechanistic studies on 2-ketopropyl coenzyme M oxidoreductase / carboxylase from Xanthobacter autotrophicus and [FeFe] hydrogenase from Clostridium pasteurianum

    Thumbnail
    View/Open
    PandeyA1207.pdf (4.102Mb)
    Date
    2007
    Author
    Pandey, Arti Sharma.
    Metadata
    Show full item record
    Abstract
    X-ray crystallography was employed to probe the mechanism of the enzyme 2- ketopropyl coenzymeM oxidoreductase / carboxylase (2-KPCC). We were able to determine the enzyme structure in various catalytically relevant states, providing insights into substrate binding, intermediate stabilization, product formation and release. Structures of 2-KPCC were obtained with the substrate 2-ketopropyl coenzyme M (KCoM), product acetoacetate, 6-oxoheptanoic acid (OHA), 2-oxopropyl phosphonate (OPP), NADP+ and coenzymeM (CoM), the oxidized and reduced states. The binding sites for these ligands in relation to one another have led to important sights into the mechanism. CO2 binds at the base of a hydrophobic channel at the interface of a hydrophobic pocket and the substrate binding site. Acetoacetate binds at an alternate anion binding site, as revealed in the bicarbonate and CoM disulfide bound structures. The enolate intermediate can be stabilized by an Ala430 carbonyl stabilized water molecule as revealed in the OHA bound structure, at a site different from that in KCoM bound structure. Together, the structures reveal a mechanism of concerted attack of a CO2 molecule on the enolate intermediate formed by the nucleophilic attack of Cys82 on the C-S bond of KCoM.
     
    Acetoacetate is stabilized at the alternate anion binding site, with the concomitant formation of a mixed disulfide. A nucleophilic attack by a water molecule on the mixed disulfide, accompanied by a weakening of interactions between CoM and Arg residues due to charge sharing with the acetoacetate carboxyl group, aids the release of CoM acetoacetate. Decarboxylation of acetoacetate occurs at the alternate anion binding site with the release of carboxyl group perhaps as bicarbonate. Structural refinement at 1.39Å in conjunction with density functional theory (DFT) optimization has been applied to address undefined aspects of the active site Hcluster that could impact the mechanism of reversible H2 oxidation by [FeFe] hydrogenase from Clostridium pasterianum. The model with highly accurate positioning of the H-cluster atoms was used for sequential structural optimization. The results of this optimization challenge the established paradigm that the dithiolate ligand bridging the Fe atoms of the 2Fe H-subcluster is a dithiomethylammonium and supports the assignment of a dimethyl ether.
     
    URI
    https://scholarworks.montana.edu/xmlui/handle/1/2005
    Collections
    • Theses and Dissertations at Montana State University (MSU)

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
     

     

    Browse

    All of ScholarWorksCommunities & CollectionsBy Issue DateAuthorsTitlesDepartmentsItem TypeThis CollectionBy Issue DateAuthorsTitlesDepartmentsItem Type

    My Account

    Login

    Guidelines & Policies

    AllFor authorsWhy to submitHow to submit

    Statistics

    View Usage Statistics

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback