Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Brian L. McGlynn.en
dc.contributor.authorRiveros-Iregui, Diego Andresen
dc.coverage.spatialRocky Mountains Regionen
dc.date.accessioned2013-06-25T18:43:56Z
dc.date.available2013-06-25T18:43:56Z
dc.date.issued2008en
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/2138
dc.description.abstractThe feedbacks between the water and the carbon cycles are of critical importance to global carbon balances. Forests and forest soils in northern latitudes are important carbon pools because of their potential as sinks for atmospheric carbon. However there are significant unknowns related to the effects of hydrologic variability, mountainous terrain, and landscape heterogeneity in controlling soil carbon dioxide (CO 2) efflux. Mountainous terrain imposes large spatial heterogeneity in the biophysical controls of soil CO 2 production and efflux, including soil temperature, soil water content, vegetation, substrate, and soil physical properties. Strong spatial and temporal variability in biophysical controls can lead to large heterogeneity in the magnitude of soil CO 2 efflux. This dissertation research investigates the relationships between these biophysical controls and the resultant CO 2 efflux across the soil-atmosphere interface in a 393-ha subalpine catchment of the Northern Rocky Mountains. This study incorporates knowledge gained through field observations (2 growing seasons) at multiple locations distributed across the watershed, and a range of empirical analytical techniques including a modeling approach to estimate point to catchment scale soil CO 2 efflux. Variability in soil CO 2 efflux was strongly related to topography and landscape structure. Riparian meadows were found to have the highest rates of cumulative soil CO 2 efflux across the entire watershed, likely due to more accumulation of soil water than upland sites, leading to enhanced plant and microbial respiration in riparian meadows. Landscape context and appreciation of organized heterogeneity are critical to estimation and interpretation of watershed-scale rates of soil CO 2 efflux and for up-scaling plot or point measurements of soil CO 2 efflux to larger spatial scales. This dissertation provides examples and suggestions for corroboration and integration of soil and canopy level CO 2 fluxes and for process understanding of spatiotemporal variability of biogeochemical processes driven by the hydrologic cycle.en
dc.language.isoengen
dc.publisherMontana State University - Bozeman, College of Agricultureen
dc.subject.lcshMountain ecology.en
dc.subject.lcshMountain plants.en
dc.subject.lcshHydrology.en
dc.subject.lcshCarbon cycle (Biogeochemistry)en
dc.subject.lcshAtmospheric carbon dioxide.en
dc.titleHydrologic-carbon cycle linkages in a subalpine catchment
dc.typeDissertation
dc.rights.holderCopyright Diego Andrés Riveros-Iregui 2008en
thesis.catalog.ckey1497870en
thesis.degree.committeemembersMembers, Graduate Committee: Lucy Marshall; Daniel L. Welsch; Howard Epsteinen
thesis.degree.departmentLand Resources & Environmental Sciences.en
thesis.degree.genreDissertationen
thesis.degree.namePhDen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage203en
mus.identifier.categoryLife Sciences & Earth Sciences
mus.relation.departmentLand Resources & Environmental Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record