Investigations of nucleotide-dependent electron transfer and substrate binding in nitrogen fixation and chlorophyll biosynthesis

Loading...
Thumbnail Image

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Letters & Science

Abstract

The studies presented in this thesis include studies of nucleotide-dependent conformations of the electron donor protein in nitrogenase and dark-operative protochlorophyllide reductase (DPOR) characterized using small-angle x-ray scattering and x-ray diffraction methods. Nitrogen fixation and chlorophyll synthesis are involved in the reduction of high energy bonds under physiological conditions. Both make use of elegant reaction mechanisms made possible by complex enzyme systems which are evolutionarily related. Nitrogenase reduces nitrogen to ammonia and is a two-component metalloenzyme composed of Fe protein and MoFe protein. For nitrogen reduction, the Fe protein and MoFe protein associate and dissociate in a manner concomitant with hydrolysis of at least two MgATP molecules and enables the concomitant transfer of at least one electron from Fe protein to MoFe protein. During chlorophyll biosysnthesis, the rate limiting step is catalyzed by a two-component metalloenzyme called DPOR. The two components of DPOR are BchL and BchNB proteins and these share high level of sequence similarity with the Fe protein and the MoFe protein, respectively. Based on this sequence similarity and biochemical data available, it is proposed that the reaction mechanism is similar to nitrogenase mechanism in which the components of DPOR associate and dissociate in a nucleotide dependent manner, to enable intercomponent electron transfer. Fe protein and BchL present as unique examples of proteins that couple nucleotide dependent conformational change to enable electron transfer for high energy bond reduction. The present studies have been directed at studying the low resolution studies of MgATP-bound wild-type Fe protein and its comparison to the structure of the proposed mimic, i.e, L127 Delta Fe protein. The studies presented show evidence of the MgATP-bound wild-type Fe protein having a conformation very different from the L127 Delta Fe protein. The chapters also include detailed characterization of the structure of BchL in both MgADP bound and nucleotide-free states which offer detailed insights in the structure based mechanism of BchL, with primary focus on identifying key residues involved in componenet docking and in electron transfer. Together, the studies on the Fe protein and BchL have furthered our understanding of mechanism of electron transfer in these complex enzyme systems.

Description

Keywords

Citation

Copyright (c) 2002-2022, LYRASIS. All rights reserved.