Transitory leaf starch is an important determinant of plant yield

Loading...
Thumbnail Image

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Agriculture

Abstract

Efficient allocation of photoassimilates from source to sink tissues is important for optimal plant growth and yield as relative source and sink strength drives growth potential of plant organs. A common method aimed at improving plant yield has been to modify enzymes important to storage compound biosynthesis in sink tissues such as seeds. As the rate limiting step in starch biosynthesis, ADP-glucose pyrophosphorylase (AGPase) has received much attention in this regard. Previously, overexpression of AGPase in seeds resulted in an enhanced yield phenotype in which both plant yield and biomass were increased. However, yield advantages were only observed under nonlimiting environmental resources. The objective of these studies was to 1) determine the importance of native leaf starch levels to the productivity and growth of maize and 2) target source strength by overexpressing AGPase in rice leaves. To determine the importance of native leaf starch levels in maize, field trials of BC 4F 2:3 plants segregating for the presence or absence of the agps-m1 mutation and leaf starch were conducted in Citra, Florida. The results clearly demonstrate the importance of normal leaf starch levels to maize productivity. The starchless agps-m1 plants were 6 to 13 cm shorter, flowered 2 to 3 days later, and had 30 percent lower seed yield than their wild type sisterlines. The impact of increased AGPase in rice leaves was then tested by overexpressing AGPase in rice leaves. Two expression constructs were used to transform rice cultivar Nipponbare, each containing a modified form of the maize endosperm AGPase large subunit sequence, Sh2r6hs, as well as the small subunit sequence, Bt2. Expression of the transgenes was under control of either the rice leaf AGPase small subunit promoter, Ags1, or native rice RuBisCO small subunit promoter, RBC. Expression of the transgenes under the RBC promoter is associated with significantly increased plant biomass. Our results indicate that it is possible to increase plant yield without increasing the rate of photosynthesis. Further, it indicates the possibility of manipulating plant yield through increasing AGPase activity in leaf tissue.

Description

Keywords

Citation

Copyright (c) 2002-2022, LYRASIS. All rights reserved.