Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Brian Bothneren
dc.contributor.authorTarlykov, Pavel Victorovichen
dc.description.abstractLittle is known about strategies and mechanisms employed by thermophilic organisms to adapt to environmental stress. Sulfolobus solfataricus is a thermophile that belongs to Archaea, the third domain of life, and can be found in unusual habitats, such as the hot springs of Yellowstone National Park. This archaeon can tolerate high temperature, extreme acidity and high concentrations of heavy metals and other toxic substances. Thus, S. solfataricus has been chosen by many researchers as a model system for biochemical, structural, and genetic studies. In this work S. solfataricus has been exposed to hydrogen peroxide as a natural mild oxidant and arsenic as a common toxic metalloid. One of the aims was to quantitatively define the regulation of proteins upon treatment with hydrogen peroxide or arsenic species in different time periods and concentrations. In this sense, two-dimensional gel electrophoresis approach in conjunction with novel chemical tagging probes has been applied to detect changes on the level of regulation and chemical modification of individual proteins within the whole proteome in response to the stressors. Proteins expression levels have been monitored, redox-sensitive and phosphoproteomic profiles of the S. solfataricus proteome have been identified. Synthesis of the results has allowed a general scheme for how S. solfataricus fights H₂O₂- and As-induced stress. Lists of mapped proteins have been created and potential biomarkers for oxidative stress have been identified, which can guide further research to better understand mechanisms of proteomic response to the environmental stress in Archaea on the example of thermophilic archaeon S. solfataricus.en
dc.publisherMontana State University - Bozeman, College of Letters & Scienceen
dc.subject.lcshOxidizing agentsen
dc.subject.lcshHydrogen peroxideen
dc.titleChemical approaches to probe environmental stress in Archaeaen
dc.rights.holderCopyright 2009 by Pavel Victorovich Tarlykoven
thesis.catalog.ckey1428356en, Graduate Committee: Edward Dratz; Martin Teintzeen & Biochemistry.en

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.