Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: V. Hugo Schmidten
dc.contributor.authorTsai, Chih-Longen
dc.date.accessioned2013-06-25T18:37:51Z
dc.date.available2013-06-25T18:37:51Z
dc.date.issued2010en
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/2448en
dc.description.abstractBa(Zr 0.8-xCe xY 0.2)O 3-delta (0 < or = x < or = 0.4) (BZCYs) powders were successfully fabricated by both solid state reaction and glycine-nitrate process. Lithium fluoride (LiF) was selected as a liquid phase sintering additive to lower the sintering temperature of BZCYs. Using LiF as an additive, high density BZCYs ceramics can be obtained at sintering temperatures 200~300 °C lower than the usual 1700 °C with much shorter soaking time. Nuclear reaction investigations showed no lithium and a small amount of fluorine reside in the sample which indicates the non-concomitant evaporation of lithium and fluorine during the sintering process. Scanning electron microscopic investigations showed the bimodal structure of BZCY ceramics and grain growth as Ce content increases. In a water saturated hydrogen containing atmosphere, BZCY ceramics have higher conductivity when LiF is used in the sintering process. LiF-added BZCY electrolyte-supported fuel cells with different cathodes were tested at temperatures from 500 ~ 850 °C. Results show that Pt cathode gives much higher power output than ceramic cathodes, indicating much larger polarization from ceramic cathodes than Pt. Ba(Zr 0.6Ce 0.2Y 0.2)O 3-delta anode supported proton conductive solid oxide fuel cells (H-SOFCs) show low power output due to its low proton conductivity. Ba(Ce 0.8Y 0.2)O 3-delta anode supported H-SOFCs show excellent power output. Different H 2 and O 2 partial pressures were used for fuel and oxidative gas, respectively, to obtain information for V(i) modeling. Different thicknesses of supporting anode were used to obtain saturation current densities of H-SOFC. Using the dusty-gas model which includes Stefan-Maxwell equation and Knudsen terms, the calculation gave tortuosity of our supporting anode 1.95 ± 0.1. The gas concentrations across the anode were also calculated by knowing the tortuosity of the supporting anode. An electrochemical model of H-SOFC was developed. The excellent agreement between model and experimental data implies that our model is close to the true physical picture of H-SOFC. The more accurate prediction of our model, based on a physical picture of electrochemical processes, also provides a replacement for using the Butler-Volmer equation in SOFC modeling. In the parametric analysis, our model shows that ohmic polarization and cathodic polarization limit the performance of H-SOFC. Research for improving H-SOFC performance should be focused on reducing electrolyte thickness, increasing proton conductivity of electrolyte and finding a compatible cathode material.en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Letters & Scienceen
dc.subject.lcshSolid oxide fuel cellsen
dc.subject.lcshElectrochemical analysisen
dc.titleCeramic processing and electrochemical analysis of proton conductive solid oxide fuel cellen
dc.typeDissertationen
dc.rights.holderCopyright 2010 by Chih Long Tsaien
thesis.catalog.ckey1524321en
thesis.degree.committeemembersMembers, Graduate Committee: John J. Neumeier; George Tuthill; Galina Malovichko; Yves U. Idzerda; Stephan W. Sofieen
thesis.degree.departmentPhysics.en
thesis.degree.genreDissertationen
thesis.degree.namePhDen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage128en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record


MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.