Neuroprotective potential of methamphetamine : behavioral and histological analysi

Loading...
Thumbnail Image

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

Montana State University - Bozeman, College of Letters & Science

Abstract

Stroke is a leading cause of death and ischemic stroke is the most common form. The deficits that follow ischemic stroke include memory and learning impairment. There are presently no treatments that can combat the effects of ischemia after the attack has occurred. Immediately following insult, locomotor activity increases in rodent models. The goal of the current research is to determine if methamphetamine administration following ischemic attack will have neuroprotective effects and prevent changes in locomotor behavior that are observed following insult. Ischemic insult was induced in gerbils by clamping the carotid arteries for 5 mins. Subjects in the sham surgical condition underwent similar surgical procedures, but the carotids were not clamped. Then, subjects were assigned randomly to saline or methamphetamine (5 mg/kg) injection groups. Drug treatment was administered within 2 mins of surgery. Measures of distance traveled, average speed, and number of line crossings were evaluated.
Differences in levels of locomotion during the first and second halves of testing were also evaluated. Finally, sections containing the hippocampal CA1 region were rated on a 4-point scale for level of damage. Results show that subjects in the ischemic and saline condition traveled significantly further than those in the sham conditions and ischemic and methamphetamine condition. The speed of ischemic subjects treated with saline was significantly higher than ischemic subjects that received methamphetamine and sham conditions. Also, subjects in the ischemic and saline treatment group crossed more lines than sham and ischemic animals treated with methamphetamine. Analysis of cresyl violet-stained brain sections of ischemic animals treated with saline were rated as having less neuronal cell bodies in the CA 1 region. Ischemic and methamphetamine treated subjects' sections were similar to sham and saline treatment sections. These results suggest that methamphetamine, when injected after transient ischemic attack, may provide neuroprotection from damage that occurs to the CA1 region and prevent the impairments in locomotor behavior.

Description

Keywords

Citation

Copyright (c) 2002-2022, LYRASIS. All rights reserved.