Show simple item record

dc.contributor.authorBoyd, Eric S.
dc.contributor.authorHamilton, Trinity L.
dc.contributor.authorHavig, Jeff R.
dc.contributor.authorSkidmore, Mark L.
dc.contributor.authorShock, Everett L.
dc.date.accessioned2015-02-05T23:34:12Z
dc.date.available2015-02-05T23:34:12Z
dc.date.issued2014-10
dc.identifier.citationBoyd, Eric S., Trinity L. Hamilton, Jeff R. Havig, Mark L. Skidmore, and Everett L. Shock. "Chemolithotrophic Primary Production in a Subglacial Ecosystem."Applied and environmental microbiology 80, no. 19 (2014): 6146-6153. http://dx.doi.org/10.1128/AEM.01956-14en_US
dc.identifier.issn0099-2240
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/8817
dc.description.abstractGlacial comminution of bedrock generates fresh mineral surfaces capable of sustaining chemotrophic microbial communities under the dark conditions that pervade subglacial habitats. Geochemical and isotopic evidence suggests that pyrite oxidation is a dominant weathering process generating protons that drive mineral dissolution in many subglacial systems. Here, we provide evidence correlating pyrite oxidation with chemosynthetic primary productivity and carbonate dissolution in subglacial sediments sampled from Robertson Glacier (RG), Alberta, Canada. Quantification and sequencing of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) transcripts suggest that populations closely affiliated with Sideroxydans lithotrophicus, an iron sulfide-oxidizing autotrophic bacterium, are abundant constituents of microbial communities at RG. Microcosm experiments indicate sulfate production during biological assimilation of radiolabeled bicarbonate. Geochemical analyses of subglacial meltwater indicate that increases in sulfate levels are associated with increased calcite and dolomite dissolution. Collectively, these data suggest a role for biological pyrite oxidation in driving primary productivity and mineral dissolution in a subglacial environment and provide the first rate estimate for bicarbonate assimilation in these ecosystems. Evidence for lithotrophic primary production in this contemporary subglacial environment provides a plausible mechanism to explain how subglacial communities could be sustained in near-isolation from the atmosphere during glacial-interglacial cycles.en_US
dc.subjectMicrobiologyen_US
dc.subjectGeomicrobiologyen_US
dc.titleChemolithotrophic primary production in a subglacial ecosystemen_US
dc.typeArticleen_US
mus.citation.extentfirstpage6146en_US
mus.citation.extentlastpage6153en_US
mus.citation.issue19en_US
mus.citation.journaltitleApplied and environmental microbiologyen_US
mus.citation.volume80en_US
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.identifier.doi10.1128/AEM.01956-14en_US
mus.relation.collegeCollege of Letters & Scienceen_US
mus.relation.departmentMicrobiology & Immunology.en_US
mus.relation.departmentEarth Sciences.en_US
mus.relation.universityMontana State University - Bozemanen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record