Montana State University (MSU) Library in Bozeman Montana State University - Home Montana State University Libraries - Home
    • Login
    View Item 
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Agriculture
    • Land Resources & Environmental Sciences
    • Scholarly Work - Land Resources & Environmental Sciences
    • View Item
    •   ScholarWorks Home
    • Scholarship & Research
    • Publications by Colleges and Departments (MSU- Bozeman)
    • College of Agriculture
    • Land Resources & Environmental Sciences
    • Scholarly Work - Land Resources & Environmental Sciences
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Synechococcus sp. strain PCC 7002 transcriptome: acclimation to temperature, salinity, oxidative stress, and mixotrophic growth conditions

    Thumbnail
    View/Open
    Published Article (2.634Mb)
    Date
    2012-10
    Author
    Ludwig, M.
    Bryant, Donald A.
    Metadata
    Show full item record
    Abstract
    Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.
    URI
    https://scholarworks.montana.edu/xmlui/handle/1/8901
    DOI
    10.3389/fmicb.2012.00354
    Citation
    Ludwig, Marcus, and Donald A. Bryant. “Synechococcus Sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions.� Frontiers in Microbiology 3 (2012).
    Collections
    • Scholarly Work - Land Resources & Environmental Sciences

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback
     

     

    Browse

    All of ScholarWorksCommunities & CollectionsBy Issue DateAuthorsTitlesDepartmentsItem TypeThis CollectionBy Issue DateAuthorsTitlesDepartmentsItem Type

    My Account

    Login

    Guidelines & Policies

    AllFor authorsWhy to submitHow to submit

    Statistics

    View Usage Statistics

    MSU uses DSpace software, copyright © 2002-2013  Duraspace
    Contact Us | Send Feedback