Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Brian Bothneren
dc.contributor.authorHeinemann, Joshua Vance.en
dc.contributor.otherWalid S. Maaty, George Gauss, Narahari Akkaladevi, Susan K. Brumfield, Vamseedhar Rayaprolu, Mark Young, C. Martin Lawrence and Brian Bothner were co-authors of the article, 'Fossil record of an HK-97-like provirus' in the journal 'Virology' which is contained within this thesis.en
dc.contributor.otherTimothy Hamerly, Walid S. Maaty, Navid Movahed, Joseph D. Steffens, Benjamin D. Reeves, Jonathan K. Hilmer, Jesse Therien, Paul A. Grieco, John W. Peters and Brian Bothner were co-authors of the article, 'Expanding the paradigm of thiol redox in the thermophilic root of life' in the journal 'Biochimica et biophysica acta' which is contained within this thesis.en
dc.contributor.otherAurélien Mazurie, Monika Tokmina-Lukaszewska, Greg J. Beilman and Brian Bothner were co-authors of the article, 'Application of support vector machines to metabolomics experiments with limited replicates' in the journal 'Metabolomics' which is contained within this thesis.en
dc.contributor.otherBrigit Noon, Mohammad J. Mohigmi, Aurélien Mazurie, David L. Dickensheets and Brian Bothner were co-authors of the article, 'Real-time digitization of metabolomic patterns from a living system using mass spectrometry' submitted to the journal 'Journal of the American Chemical Society' which is contained within this thesis.en
dc.date.accessioned2016-01-03T16:12:35Z
dc.date.available2016-01-03T16:12:35Z
dc.date.issued2014en
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/9130
dc.description.abstractOne of the goals of systems biology is to develop a model which encapsulates the molecular, structural and temporal complexity of a living organism. While modern omics experiments can deliver a high resolution view of an organism's molecular complexity, methods for correlating the information from multiple biomolecular systems (i.e. genes, proteins and metabolites) and their changes over time remain greatly underdeveloped. Presented in this research are: (1) methods for understanding the inter-relation of multiple biomolecular systems correlating genomics, proteomics and metabolomics experiments; (2) techniques for machine learning based metabolic biomarker selection; (3) robotics technology for real-time measurement of changes in metabolism. The methods for correlating information from multiple biomolecular systems have provided a new perspective of biomolecular adaptation and evolutionary relationships in the thermophilic archaea. The techniques for biomarker selection have provided a method to assess the reliability of biomarkers in experiments where limited samples are available. The new technology has provided an engineered system for automated analysis of metabolic patterns and how they change over time. Together, these results have created a framework for future improvement of our understanding of biology through the use of molecular biology, machine learning and robotics.en
dc.language.isoengen
dc.publisherMontana State University - Bozeman, College of Letters & Scienceen
dc.subject.lcshThermophilic microorganisms.en
dc.subject.lcshMetabolism.en
dc.subject.lcshBiochemical markers.en
dc.subject.lcshRobotics.en
dc.subject.lcshSystems biology.en
dc.titleFossil viruses, redox paradigms and predictive metabolism from a systems biology perspectiveen
dc.typeDissertationen
dc.rights.holderCopyright 2014 by Joshua Vance Heinemann.en
thesis.catalog.ckey2752917en
thesis.degree.committeemembersMembers, Graduate Committee: Brian Bothner (chairperson); John W. Peters; Edward Dratz; C. Martin Lawrence.en
thesis.degree.departmentChemistry & Biochemistry.en
thesis.degree.genreDissertationen
thesis.degree.namePhDen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage149en


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record