Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Robert L. Mokwaen
dc.contributor.authorBrooks, Heather Margareten
dc.description.abstractPile foundations used to support bridges and other structures are designed and installed to sustain axial and lateral loads without failing in bearing capacity and without undergoing excessive movements. The axial load-carrying capacity of a driven pile is derived from friction or adhesion along the pile shaft and by compressive resistance at the pile tip. There are well established analytical methods for evaluating pile capacity and for predicting pile driving characteristics for cohesive soil, cohesionless soil, and rock. However, past experience indicates these methods may not be reliable for piles driven into intermediate geomaterials (IGMs), which often exhibit a wide array of properties with characteristics ranging from stiff or hard soil to soft weathered rock. Methods to determine the axial capacity, driving resistance, and long-term resistance of piles driven into intermediate geomaterials are not well established. Nine projects, in which piles were driven into IGMs, from the Montana Department of Transportation were analyzed. Each project contained information from CAPWAP dynamic analyses, construction records, and design reports. The purpose of any analyses, of the nine projects, was to better predict the behavior of piles in IGMs. IGMs were divided into two broad types, cohesive and cohesionless. The computer program DRIVEN is often used to predict the axial capacities of piles; however, in IGMs the design method is unreliable. Attempts were made to determine trends within the available data. Normalized resistances for shaft and toe capacities did yield slight correlations of shaft resistance to pile length in IGMs. Iterative solutions using DRIVEN to match the CAPWAP ultimate capacity did not provide meaningful trends or correlations. Slight modification of MDT's original DRIVEN inputs was required in most cases to match the CAPWAP ultimate capacity. Because no meaningful trends were found from analysis, other capacity calculation methods were used to determine other methods that accurately predict pile capacity within IGMs. The Washington Department of Transportation Gates formula is the most accurate method of those attempted. More research is required for further analysis of piles in IGMs.en
dc.publisherMontana State University - Bozeman, College of Engineeringen
dc.subject.lcshStress wavesen
dc.subject.lcshEngineering geologyen
dc.subject.lcshSoil mechanicsen
dc.titleAxial capacity of piles supported on intermediate geomaterialsen
dc.rights.holderCopyright 2008 by Heather Margaret Brooksen
thesis.catalog.ckey1336424en, Graduate Committee: Steve Perkins; Eli Cuelhoen Engineering.en

Files in this item


This item appears in the following Collection(s)

Show simple item record

MSU uses DSpace software, copyright © 2002-2017  Duraspace. For library collections that are not accessible, we are committed to providing reasonable accommodations and timely access to users with disabilities. For assistance, please submit an accessibility request for library material.