Show simple item record

dc.contributor.advisorChairperson, Graduate Committee: Jamie McEvoyen
dc.contributor.authorHolmes, Danika Leahen
dc.contributor.otherJamie McEvoy, Jean Dixon and Scott Payne Water were co-authors of the article, 'Natural water storage and climate change resiliency in Montana: a geospatial approach' submitted to the journal 'Water' which is contained within this thesis.en
dc.coverage.spatialMelstone (Mont.)en
dc.date.accessioned2017-01-30T16:34:35Z
dc.date.available2017-01-30T16:34:35Z
dc.date.issued2016en
dc.identifier.urihttps://scholarworks.montana.edu/xmlui/handle/1/9887
dc.description.abstractClimate change is projected to affect the quantity, quality, and timing of water availability in Montana, including a shift toward earlier spring runoff and more winter precipitation as rain. Montana state agencies have expressed the need to mitigate drought and damage from extreme flood events by identifying new locations for more efficient water storage. In the 2015 Montana State Water Plan, the Department of Natural Resources and Conservation (DNRC) identifies natural storage infrastructures (floodplains, wetlands, riparian areas) as valuable tools to increase drought resiliency and mitigate water shortage. Quantifying how much water can be stored through natural storage has been a key question for Montana water planners. This study addresses western state management needs for a cost- and time-effective method of estimating floodplain water storage potential and provides a GIS-based model that identifies potential natural storage sites using open-source data. The result is a range of storage capacities for a study site near Melstone, Montana, under eight natural water storage conditions. Storage potentials ranged from 934 m 3 for small flood extents to 321,252 m 3 for large floods. This model can be refined using additional hydraulic inputs, and re-scaled to address more complex questions probing the efficacy of natural infrastructure-based water storage in the western United States.en
dc.language.isoenen
dc.publisherMontana State University - Bozeman, College of Letters & Scienceen
dc.subject.lcshClimatic changes.en
dc.subject.lcshWater Storage.en
dc.subject.lcshGroundwater.en
dc.titleNaturalwater storage and climate change resiliency in Montana : a geospatial approachen
dc.typeThesisen
dc.rights.holderCopyright 2016 by Danika Leah Holmes.en
thesis.degree.committeemembersMembers, Graduate Committee: Jamie McEvoy (chairperson); Jean Dixon; Scott Payne.en
thesis.degree.departmentEarth Sciences.en
thesis.degree.genreThesisen
thesis.degree.nameMSen
thesis.format.extentfirstpage1en
thesis.format.extentlastpage77en
mus.identifier.categoryLife Sciences & Earth Sciencesen_US
mus.relation.universityMontana State University - Bozemanen_US
mus.data.thumbpage19


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record