Scholarly Work - Physics

Permanent URI for this collection


Recent Submissions

Now showing 1 - 20 of 387
  • Item
    Programmable nanowrinkle-induced room-temperature exciton localization in monolayer WSe2
    (Springer Science and Business Media LLC, 2024-02) Yanev, Emanuil S.; Darlington, Thomas P.; Ladyzhets, Sophia A.; Strasbourg, Matthew C.; Trovatello, Chiara; Liu, Song; Rhodes, Daniel A.; Hall, Kobi; Sinha, Aditya; Hone, James C.; Schuck, P. James
    Localized states in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have been the subject of intense study, driven by potential applications in quantum information science. Despite the rapidly growing knowledge surrounding these emitters, their microscopic nature is still not fully understood, limiting their production and application. Motivated by this challenge, and by recent theoretical and experimental evidence showing that nanowrinkles generate strain-localized room-temperature emitters, we demonstrate a method to intentionally induce wrinkles with collections of stressors, showing that long-range wrinkle direction and position are controllable with patterned array design. Nano-photoluminescence (nano-PL) imaging combined with detailed strain modeling based on measured wrinkle topography establishes a correlation between wrinkle properties, particularly shear strain, and localized exciton emission. Beyond the array-induced wrinkles, nano-PL spatial maps further reveal that the strain environment around individual stressors is heterogeneous due to the presence of fine wrinkles that are less deterministic. At cryogenic temperatures, antibunched emission is observed, confirming that the nanocone-induced strain is sufficiently large for the formation of quantum emitters. At 300 K, detailed nanoscale hyperspectral images uncover a wide range of low-energy emission peaks originating from the fine wrinkles, and show that the states can be tightly confined to regions <10 nm, even in ambient conditions. These results establish a promising potential route towards realizing room temperature quantum emission in 2D TMDC systems.
  • Item
    PEARLS: JWST Counterparts of Microjansky Radio Sources in the Time Domain Field
    (American Astronomical Society, 2023-11) Willner, S. P.; Gim, Hangsung B.; del Carmen Polletta, Maria; Cohen, Seth H.; Willmer, Christopher N. A.; Zhao, Xiurui; D'Silva, Jordan C. J.; Jansen, Rolf A.; Koekemoer, Anton M.; Summers, Jake; Windhorst, Rogier A.; Coe, Dan; Conselice, Christopher J.; Driver, Simon P.; Frye, Brenda; Grogin, Norman A.; Marshall, Madeline A.; Nonino, Mario; Ortiz, Rafael; Pirzkal, Nor; Robotham, Aaron; Rutkowski, Michael J.; Ryan, Russell E.; Tompkins, Scott; Yan, Haojing; Hammel, Heidi B.; Milam, Stefanie N.; Yan, Nathan J.; Beacom, John F.; Bhatawdekar, Rachana; Cheng, Cheng; Civano, F.; Cotton, W.; Hyun, Minhee; Kikuta, Satoshi; Nyland, K. E.; Peters, W. M.; Petric, Andreea; Röttgering, Huub J. A.; Shimwell, T.; Yun, Min S.
    The Time Domain Field (TDF) near the North Ecliptic Pole in JWST's continuous-viewing zone will become a premier "blank field" for extragalactic science. JWST/NIRCam data in a 16 arcmin2 portion of the TDF identify 4.4 μm counterparts for 62 of 63 3 GHz sources with S(3 GHz) > 5 μJy. The one unidentified radio source may be a lobe of a nearby Seyfert galaxy, or it may be an infrared-faint radio source. The bulk properties of the radio-host galaxies are consistent with those found by previous work: redshifts range from 0.14–4.4 with a median redshift of 1.33. The radio emission arises primarily from star formation in ∼2/3 of the sample and from an active galactic nucleus (AGN) in ∼1/3, but just over half the sample shows evidence for an AGN either in the spectral energy distribution or by radio excess. All but three counterparts are brighter than magnitude 23 AB at 4.4 μm, and the exquisite resolution of JWST identifies correct counterparts for sources for which observations with lower angular resolution would misidentify a nearby bright source as the counterpart when the correct one is faint and red. Up to 11% of counterparts might have been unidentified or misidentified absent NIRCam observations.
  • Item
    Application of balloon-borne high precision GPS for inertia gravity wave characterization
    (Elsevier BV, 2023-11) Kim, Bryce; Larimer, Randy
    Atmospheric gravity waves have conventionally been studied and characterized using temperature and wind data from radiosondes. In this study we outline and adapt several previously established wave-detection methods for use with solely high-resolution position and velocity measurements from student-constructed GPS units. We consider both vertical and horizontal profiles, utilizing Fourier, hodograph, and polarization analyses, which primarily target low-frequency inertia gravity waves. Using eleven balloon flights over central Montana and New Mexico conducted during 2021–2023 summers by the Balloon Outreach Research Exploration and Landscape Imaging Systems (BOREALIS) program, we show the validity of our procedures in successfully locating inertia gravity waves and finding wave parameters consistent with those of existing studies. A total of eleven waves were found in seven of the flights, with the same wave likely showing up more than once in two flights. The detected waves generally had intrinsic frequencies of one to two times the Coriolis frequency, spanned vertical wavelengths between one and two kilometers, and had periods of between 10 and 15 h.
  • Item
    Six More Ultra-faint Milky Way Companions Discovered in the DECam Local Volume Exploration Survey
    (American Astronomical Society, 2023-07) Cerny, W.; Martínez-Vázquez, C. E.; Drlica-Wagner, A.; Pace, A. B.; Mutlu-Pakdil, B.; Li, T. S.; Riley, A. H.; Crnojević, D.; Bom, C. R.; Carballo-Bello, J. A.; Carlin, J. L.; Chiti, A.; Choi, Y.; Collins, M. L. M.; Darragh-Ford, E.; Ferguson, P. S.; Geha, M.; Martínez-Delgado, D.; Massana, P.; Mau, S.; Medina, G. E.; Muñoz, R. R.; Nadler, E. O.; Noël, N. E. D.; Olsen, K. A. G.; Pieres, A.; Sakowska, J. D.; Simon, J. D.; Stringfellow, G. S.; Tollerud, E. J.; Vivas, A. K.; Walker, A. R.; Wechsler, R. H.
    We report the discovery of six ultra-faint Milky Way satellites identified through matched-filter searches conducted using Dark Energy Camera (DECam) data processed as part of the second data release of the DECam Local Volume Exploration (DELVE) survey. Leveraging deep Gemini/GMOS-N imaging (for four candidates) as well as follow-up DECam imaging (for two candidates), we characterize the morphologies and stellar populations of these systems. We find that these candidates all share faint absolute magnitudes (MV ≥ −3.2 mag) and old, metal-poor stellar populations (τ > 10 Gyr, [Fe/H] < −1.4 dex). Three of these systems are more extended (r1/2 > 15 pc), while the other three are compact (r1/2 < 10 pc). From these properties, we infer that the former three systems (Boötes V, Leo Minor I, and Virgo II) are consistent with ultra-faint dwarf galaxy classifications, whereas the latter three (DELVE 3, DELVE 4, and DELVE 5) are likely ultra-faint star clusters. Using data from the Gaia satellite, we confidently measure the proper motion of Boötes V, Leo Minor I, and DELVE 4, and tentatively detect a proper-motion signal from DELVE 3 and DELVE 5; no signal is detected for Virgo II. We use these measurements to explore possible associations between the newly discovered systems and the Sagittarius dwarf spheroidal, the Magellanic Clouds, and the Vast Polar Structure, finding several plausible associations. Our results offer a preview of the numerous ultra-faint stellar systems that will soon be discovered by the Vera C. Rubin Observatory and highlight the challenges of classifying the faintest stellar systems.
  • Item
    Electrically tunable magnetic fluctuations in multilayered vanadium-doped tungsten diselenide
    (Springer Science and Business Media LLC, 2023-08) Nguyen, Lan-Anh T.; Jiang, Jinbao; Nguyen, Tuan Dung; Kim, Philip; Joo, Min-Kyu; Duong, Dinh Loc; Lee, Young Hee
    Fluctuations are ubiquitous in magnetic materials and can cause random telegraph noise. Such noise is of potential use in systems such as spiking neuron devices, random number generators and probability bits. Here we report electrically tunable magnetic fluctuations and random telegraph noise in multilayered vanadium-doped tungsten diselenide (WSe2) using vertical tunnelling heterostructure devices composed of graphene/vanadium-doped WSe2/graphene and magnetoresistance measurements. We identify bistable magnetic states through discrete Gaussian peaks in the random telegraph noise histogram and the 1/f2 features of the noise power spectrum. Three categories of fluctuation are detected: small resistance fluctuations at high temperatures due to intralayer coupling between the magnetic domains; large resistance changes over a wide range of temperatures; and persistent large resistance changes at low temperatures due to magnetic interlayer coupling. We also show that the bistable state and cut-off frequency of the random telegraph noise can be modulated with an electric bias.
  • Item
    Confident detection of doubly ionized thorium in the extreme Ap star CPD-62° 2717
    (Oxford University Press, 2023-05) Chojnowski, S Drew; Hubrig, Swetlana; Nidever, David L; Niemczura, Ewa; Labadie-Bartz, Jonathan; Mathys, Gautier; Hasselquist, Sten
    Despite the Universe containing primordial thorium (Th) of sufficient abundance to appear in stellar spectra, detection of Th has to date been tentative and based on just a few weak and blended lines. Here, we present convincing evidence not only for the first Th detection in a magnetic chemically peculiar Ap star but also for the first detection of Th iii in a stellar spectrum. CPD-62° 2717 was initially recognized as a highly magnetized Ap star due to resolved magnetically split lines captured in H-band spectra from the SDSS/APOGEE survey. The star was subsequently pinpointed as extraordinarily peculiar when careful inspection of the H-band line content revealed the presence of five lines of Th iii, none of which are detected in the other ∼1500 APOGEE-observed Ap stars. Follow-up with the VLT + UVES confirmed a similarly peculiar optical spectrum featuring dozens of Th iii lines, among other peculiarities. Unlike past claims of Th detection, and owing to high-resolution observations of the strong (∼8–12 kG) magnetic field of CPD-62° 2717, the detection of Th iii can in this case be supported by matches between the observed and theoretical magnetic splitting patterns. Comparison of CPD-62° 2717 to stars for which Th overabundances have been previously reported (e.g. Przybylski’s Star) indicates that only for CPD-62° 2717 is the Th detection certain. Along with the focus on Th iii, we use time series measurements of the magnetic field modulus to constrain the rotation period of CPD-62° 2717 to ∼4.8 yr, thus establishing it as a new example of a superslowly rotating Ap star.
  • Item
    The Role of Magnetic Shear in Reconnection-Driven Flare Energy Release
    (Cornell University, 2023-08) Qiu, J.; Alaoui, M.; Antiochos, S. K.; Dahlin, J. T.; Swisdak, M.; Drake, J. F.; Robison, A.; DeVore, C. R.; Uritsky, V. M.
    Using observations from the Solar Dynamics Observatory's Atmosphere Imaging Assembly and the Ramaty High Energy Solar Spectroscopic Imager, we present novel measurements of the shear of post-reconnection flare loops (PRFLs) in SOL20141218T21:40 and study its evolution with respect to magnetic reconnection and flare emission. Two quasi-parallel ribbons form adjacent to the magnetic polarity inversion line (PIL), spreading in time first parallel to the PIL and then mostly in a perpendicular direction. We measure magnetic reconnection rate from the ribbon evolution, and also the shear angle of a large number of PRFLs observed in extreme ultraviolet passbands (≲1 MK). For the first time, the shear angle measurements are conducted using several complementary techniques allowing for a cross-validation of the results. In this flare, the total reconnection rate is much enhanced before a sharp increase of the hard X-ray emission, and the median shear decreases from 60∘-70∘ to 20∘, on a time scale of ten minutes. We find a correlation between the shear-modulated total reconnection rate and the non-thermal electron flux. These results confirm the strong-to-weak shear evolution suggested in previous observational studies and reproduced in numerical models, and also confirm that, in this flare, reconnection is not an efficient producer of energetic non-thermal electrons during the first ten minutes when the strongly sheared PRFLs are formed. We conclude that an intermediate shear angle, ≤40∘, is needed for efficient particle acceleration via reconnection, and we propose a theoretical interpretation.
  • Item
    Origins of the Evil Eye: M64's Stellar Halo Reveals the Recent Accretion of an SMC-mass Satellite
    (American Astronomical Society, 2023-06) Smercina, Adam; Bell, Eric F.; Price, Paul A.; Bailin, Jeremy; Dalcanton, Julianne J.; de Jong, Roelof S.; D’Souza, Richard; Gozman, Katya; Jang, In Sung; Monachesi, Antonela; Nidever, David; Slater, Colin T.
    M64, often called the "Evil Eye" galaxy, is unique among local galaxies. Beyond its dramatic, dusty nucleus, it also hosts an outer gas disk that counter-rotates relative to its stars. The mass of this outer disk is comparable to the gas content of the Small Magellanic Cloud (SMC), prompting the idea that it was likely accreted in a recent minor merger. Yet, detailed follow-up studies of M64's outer disk have shown no evidence of such an event, leading to other interpretations, such as a "flyby" interaction with the distant diffuse satellite Coma P. We present Subaru Hyper Suprime-Cam observations of M64's stellar halo, which resolve its stellar populations and reveal a spectacular radial shell feature, oriented ∼30° relative to the major axis and along the rotation axis of the outer gas disk. The shell is ∼45 kpc southeast of M64, while a similar but more diffuse plume to the northwest extends to >100 kpc. We estimate a stellar mass and metallicity for the southern shell of M⋆ = 1.80 ± 0.54 × 108M⊙ and [M/H] = −1.0, respectively, and a similar mass of 1.42 ± 0.71 × 108M⊙ for the northern plume. Taking into account the accreted material in M64's inner disk, we estimate a total stellar mass for the progenitor satellite of M⋆,prog ≃ 5 × 108M⊙. These results suggest that M64 is in the final stages of a minor merger with a gas-rich satellite strikingly similar to the SMC, in which M64's accreted counter-rotating gas originated, and which is responsible for the formation of its dusty inner star-forming disk.
  • Item
    JWST’s PEARLS: TN J1338–1942 – I. Extreme jet-triggered star formation in a z = 4.11 luminous radio galaxy
    (Oxford University Press, 2023-04) Duncan, Kenneth J; Windhorst, Rogier A; Koekemoer, Anton M; Röttgering, Huub J A; Cohen, Jansen; Summers, Jake; Tompkins, Scott; Hutchison, Taylor A; Conselice, Christopher J; Driver, Simon P; Yan, Haojing; Adams, Nathan J; Cheng, Cheng; Coe, Dan; Diego, Jose M; Dole, Hervé; Frye, Brenda; Gim, Hansung B; Grogin, Norman A; Holwerda, Benne W; Lim, Jeremy; Marshall, Madeline A; Nonino, Mario; Pirzkal, Nor; Robotham, Aaron; Ryan, Russell E; Willmer, Christopher N A
    We present the first JWST observations of the z = 4.11 luminous radio galaxy TN J1338–1942, obtained as part of the ‘Prime Extragalactic Areas for Reionization and Lensing Science’ (‘PEARLS’) project. Our NIRCam observations, designed to probe the key rest-frame optical continuum and emission line features at this redshift, enable resolved spectral energy distribution modelling that incorporates both a range of stellar population assumptions and radiative shock models. With an estimated stellar mass of log10(M/M⊙) ∼ 10.9, TN J1338–1942 is confirmed to be one of the most massive galaxies known at this epoch. Our observations also reveal extremely high equivalent-width nebular emission coincident with the luminous AGN jets that is best fit by radiative shocks surrounded by extensive recent star formation. We estimate the total star-formation rate (SFR) could be as high as ∼1600M⊙yr−1 , with the SFR that we attribute to the jet induced burst conservatively ≳500M⊙yr−1 . The mass-weighted age of the star-formation, tmass < 4 Myr, is consistent with the likely age of the jets responsible for the triggered activity and significantly younger than that measured in the core of the host galaxy. The extreme scale of the potential jet-triggered star-formation activity indicates the potential importance of positive AGN feedback in the earliest stages of massive galaxy formation, with our observations also illustrating the extraordinary prospects for detailed studies of high-redshift galaxies with JWST.
  • Item
    Structure of the Plasma near the Heliospheric Current Sheet as Seen by WISPR/Parker Solar Probe from inside the Streamer Belt
    (IOP Publising, 2023-05) Liewer, Paulett C.; Vourlidas, Angelos; Stenborg, Guillermo; Howard, Russell A.; Qiu, Jiong; Penteado, Paulo; Panasenco, Olga; Braga, Carlos R.
    Parker Solar Probe (PSP) crossed the heliospheric current sheet (HCS) near the perihelion on encounters E8 and E11, enabling the Wide-field Imager for Solar Probe (WISPR) to image the streamer belt plasma in high resolution while flying through it. With perihelia of 16 R⊙ and 13 R⊙ for E8 and E11, respectively, WISPR images enable investigation of the structure of density encasing the HCS at much higher resolution than reported previously. As PSP flies closer to the Sun, fine-scale structures are resolved within the coronal rays of the streamer belt. Near the HCS, WISPR observes a fan of rays of various sizes and brightnesses, indicating large density variations in the HCS plasma sheet transverse to the radial direction. Near the perihelion, when PSP's speed exceeds the solar corotation speed, some rays exhibit large changes in apparent latitude as the HCS is encountered, and rays pass over and under the spacecraft. The multiple viewpoints provided during the HCS crossing enable us to extract the coordinates of a few rays in a heliocentric frame. The rays were found to lie near the HCS from a PFSS model. We compare their locations to the location of the streamers as seen in synoptic maps from the Large Angle and Spectrometric Coronagraph, and find that the rays generally fall within the bright streamer bands seen in these maps, which confirms that they are features of the streamer belt plasma. We speculate that the density variations in the helmet streamer plasma result from continuous interchange reconnection along the coronal hole boundaries.
  • Item
    The Imprint of Clump Formation at High Redshift. II. The Chemistry of the Bulge
    (American Astronomical Society, 2023-04) Debattista, Victor P.; Liddicott, David J.; Gonzalez, Oscar A.; Beraldo e Silva, Leandro; Amarante, João A. S.; Lazar, Ilin; Zoccali, Manuela; Valenti, Elena; Fisher, Deanne B.; Khachaturyants, Tigran; Nidever, David L.; Quinn, Thomas R.; Du, Min; Kassin, Susan
    In Paper I, we showed that clumps in high-redshift galaxies, having a high star formation rate density (ΣSFR), produce disks with two tracks in the [Fe/H]–[α/Fe] chemical space, similar to that of the Milky Way's (MW's) thin+thick disks. Here we investigate the effect of clumps on the bulge's chemistry. The chemistry of the MW's bulge is comprised of a single track with two density peaks separated by a trough. We show that the bulge chemistry of an N-body + smoothed particle hydrodynamics clumpy simulation also has a single track. Star formation within the bulge is itself in the high-ΣSFR clumpy mode, which ensures that the bulge's chemical track follows that of the thick disk at low [Fe/H] and then extends to high [Fe/H], where it peaks. The peak at low metallicity instead is comprised of a mixture of in situ stars and stars accreted via clumps. As a result, the trough between the peaks occurs at the end of the thick disk track. We find that the high-metallicity peak dominates near the mid-plane and declines in relative importance with height, as in the MW. The bulge is already rapidly rotating by the end of the clump epoch, with higher rotation at low [α/Fe]. Thus clumpy star formation is able to simultaneously explain the chemodynamic trends of the MW's bulge, thin+thick disks, and the splash.
  • Item
    Ambipolar Heating of Magnetars
    (American Astronomical Society, 2023-03) Tsuruta, Sachiko; Kelly, Madeline J.; Nomoto, Ken’ichi; Mori, Kanji; Teter, Marcus; Liebmann, Andrew C.
    Magnetars, neutron stars thought to be with ultrastrong magnetic fields of 1014–15 G, are observed to be much hotter than ordinary pulsars with ∼1012 G, and additional heating sources are required. One possibility is heating by the ambipolar diffusion in the stellar core. This scenario is examined by calculating the models using the relativistic thermal evolutionary code without making the isothermal approximation. The results show that this scenario can be consistent with most of the observed magnetar temperature data.
  • Item
    NuSTAR Observations of a Heavily X-Ray-obscured AGN in the Dwarf Galaxy J144013+024744
    (American Astronomical Society, 2023-01) Ansh, Shrey; Chen, Chien-Ting J.; Brandt, W. N.; Hood, Carol E.; Kammoun, E. S.; Lansbury, G.; Paltani, Stéphane; Reines, Amy E.; Ricci, C.; Swartz, Douglas A.; Trump, Jonathan R.; Vito, F.; Hickox, Ryan C.
    We present a multiwavelength analysis of the dwarf Seyfert 2 galaxy J144013+024744, a candidate obscured active galactic nucleus (AGN) thought to be powered by an intermediate-mass black hole (IMBH, M • ≈ 104−106 M ⊙) of mass M • ∼ 105.2 M ⊙. To study its X-ray properties, we targeted J144013+024744 with NuSTAR for ≈100 ks. The X-ray spectrum was fitted with an absorbed power law, Pexmon, and a physical model (RXTorus). A Bayesian X-ray analysis was performed to estimate the posteriors. The phenomenological and the physical models suggest the AGN to be heavily obscured by a column density of N H = (3.4–7.0) × 1023 cm−2. In particular, the RXTorus model with a subsolar metallicity suggests the obscuring column to be almost Compton-thick. We compared the 2–10 keV intrinsic X-ray luminosity with the inferred X-ray luminosities based on empirical scaling relations for unobscured AGNs using L [Oiv] 25.89 μm, L [Oiii] λ5007, and L 6μm and found that the high-excitation [Oiv] line provides a better estimate of the intrinsic 2–10 keV X-ray luminosity ( L 2 – 10 int ∼ 10 41.41 erg s−1). Our results suggest that J144013+024744 is the first type 2 dwarf galaxy that shows X-ray spectroscopic evidence for obscuration. The column density that we estimated is among the highest measured to date for IMBH-powered AGNs, implying that a typical AGN torus geometry might extend to the low-mass end. This work has implications for constraining the BH occupation fraction in dwarf galaxies using X-ray observations.
  • Item
    Multiwavelength scrutiny of X-ray sources in dwarf galaxies: ULXs versus AGNs
    (Oxford University Press, 2023-01) Thygesen, Erica; Plotkin, Richard M; Soria, Roberto; Reines, Amy E; Greene, Jenny E; Anderson, Gemma E; Baldassare, Vivienne F; Owens, Milo G; Urquhart, Ryan T; Gallo, Elena; Miller-Jones, James C A; Paul, Jeremiah D; Rollings, Alexandar P
    Owing to their quiet evolutionary histories, nearby dwarf galaxies (stellar masses M⋆≲3×109M⊙⁠) have the potential to teach us about the mechanism(s) that ‘seeded’ the growth of supermassive black holes, and also how the first stellar mass black holes formed and interacted with their environments. Here, we present high spatial resolution observations of three dwarf galaxies in the X-ray (Chandra), the optical/near-infrared (Hubble Space Telescope), and the radio (Karl G. Jansky Very Large Array). These three galaxies were previously identified as hosting candidate active galactic nuclei on the basis of lower resolution X-ray imaging. With our new observations, we find that X-ray sources in two galaxies (SDSS J121326.01+543631.6 and SDSS J122111.29+173819.1) are off-nuclear and lack corresponding radio emission, implying they are likely luminous X-ray binaries. The third galaxy (Mrk 1434) contains two X-ray sources (each with LX ≈ 1040 erg s−1) separated by 2.8 arcsec, has a low metallicity [12 + log(O/H) = 7.8], and emits nebular He ii λ4686 line emission. The northern source has spatially coincident point-like radio emission at 9.0 GHz and extended radio emission at 5.5 GHz. We discuss X-ray binary interpretations (where an ultraluminous X-ray source blows a ‘radio bubble’) and active galactic nucleus interpretations (where an ≈4×105M⊙ black hole launches a jet). In either case, we find that the He ii emission cannot be photoionized by the X-ray source, unless the source was ≈30–90 times more luminous several hundred years ago.
  • Item
    Auger electron spectroscopy mapping of lithium niobate ferroelectric domains with nano-scale resolution
    (Optica Publishing Group, 2022-12) McLoughlin, Torrey; Babbitt, Wm. Randall; Nakagawa, Wataru
    The +/−Z ferroelectric domains in periodically poled lithium niobate are characterized with Auger electron spectroscopy. The -Z domains have a higher Auger O-KLL transition amplitude than the +Z domains. Based on this, Auger electron spectroscopy mapping can be used on the O-KLL peak to image the +/-Z domain structure. This new characterization technique is confirmed with HF etching, and compared to SEM imaging. Spatial resolution down to 68 nm is demonstrated.
  • Item
    First Flight of the EUV Snapshot Imaging Spectrograph (ESIS)
    (American Astronomical Society, 2022-10) Parker, Jacob D.; Smart, Roy T.; Kankelborg, Charles; Winebarger, Amy; Goldsworth, Nelson
    The Extreme-ultraviolet Snapshot Imaging Spectrograph (ESIS) launched on a sounding rocket from White Sands Missile Range on 2019 September 30. ESIS is a computed tomography imaging spectrograph (CTIS) designed to map emission line profiles across a wide field of view, revealing the structure and dynamics of small-scale transient events that are prevalent at transition region temperatures. In this paper, we review the ESIS instrument, mission, and data captured. We demonstrate how this unique data set can be interpreted qualitatively and further present some initial quantitative inversions of the data. Using a multiplicative algebraic reconstruction technique, we combine information from all four ESIS channels into a single spatial–spectral cube at every exposure. We analyze two small explosive events in the O v 629.7 Å spectral line with jets near ±100 km s−1 that evolve on 10 s timescales and vary significantly over small spatial scales. Intriguingly, each of these events turns out to be a bimodal (red+blue) jet with outflows that are asymmetric and unsynchronized. We also present a qualitative analysis of a small jetlike eruption captured by ESIS and draw comparisons to previously observed mini-filament eruptions. In 5 minutes of observing time, ESIS captured the spatial and temporal evolution of tens of these small events across the ∼11.′5 field of view, as well as several larger extended eruptions, demonstrating the advantage of CTIS instruments over traditional slit spectrographs in capturing the spatial and spectral information of dynamic solar features across large fields of view.
  • Item
    Intermediate-mass black holes and the Fundamental Plane of black hole accretion
    (Oxford University Press, 2022-09) Gültekin, Kayhan; Nyland, Kristina; Gray, Nichole; Fehmer, Greg; Huang, Tianchi; Sparkman, Matthew; Reines, Amy E; Greene, Jenny E; Cackett, Edward M; Baldassare, Vivienne
    We present new 5 GHz Very Large Array observations of a sample of eight active intermediate-mass black holes with masses 104.9 M⊙ < M < 106.1 M⊙ found in galaxies with stellar masses M* < 3 × 109 M⊙. We detected five of the eight sources at high significance. Of the detections, four were consistent with a point source, and one (SDSS J095418.15+471725.1, with black hole mass M < 105 M⊙) clearly shows extended emission that has a jet morphology. Combining our new radio data with the black hole masses and literature X-ray measurements, we put the sources on the Fundamental Plane of black hole accretion. We find that the extent to which the sources agree with the Fundamental Plane depends on their star-forming/composite/active galactic nucleus (AGN) classification based on optical narrow emission-line ratios. The single star-forming source is inconsistent with the Fundamental Plane. The three composite sources are consistent, and three of the four AGN sources are inconsistent with the Fundamental Plane. We argue that this inconsistency is genuine and not a result of misattributing star formation to black hole activity. Instead, we identify the sources in our sample that have AGN-like optical emission-line ratios as not following the Fundamental Plane and thus caution the use of the Fundamental Plane to estimate masses without additional constraints, such as radio spectral index, radiative efficiency, or the Eddington fraction.
  • Item
    Extracting the Heliographic Coordinates of Coronal Rays Using Images from WISPR/Parker Solar Probe
    (Springer Science and Business Media LLC, 2022-09) Liewer, P. C.; Qiu, J.; Ark, F.; Penteado, P.; Stenborg, G.; Vourlidas, A.; Hall, J. R.; Riley, P.
    The Wide-field Imager for Solar Probe (WISPR) onboard Parker Solar Probe (PSP), observing in white light, has a fixed angular field of view, extending from 13.5∘ to 108∘ from the Sun and approximately 50∘ in the transverse direction. In January 2021, on its seventh orbit, PSP crossed the heliospheric current sheet (HCS) near perihelion at a distance of 20 solar radii. At this time, WISPR observed a broad band of highly variable solar wind and multiple coronal rays. For six days around perihelion, PSP was moving with an angular velocity exceeding that of the Sun. During this period, WISPR was able to image coronal rays as PSP approached and then passed under or over them. We have developed a technique for using the multiple viewpoints of the coronal rays to determine their location (longitude and latitude) in a heliocentric coordinate system and used the technique to determine the coordinates of three coronal rays. The technique was validated by comparing the results to observations of the coronal rays from Solar and Heliophysics Observatory (SOHO)/Large Angle and Spectrometric COronagraph (LASCO)/C3 and Solar Terrestrial Relations Observatory (STEREO)-A/COR2. Comparison of the rays’ locations were also made with the HCS predicted by a 3D MHD model. In the future, results from this technique can be used to validate dynamic models of the corona.
  • Item
    Nano-scale ferroelectric domain differentiation in periodically poled lithium niobate with auger electron spectroscopy
    (Optica Publishing Group, 2022-03) McLoughlin, Torrey; Babbitt, Wm. Randall; Nakagawa, Wataru
    A new method for characterizing lithium niobate +/-Z ferroelectric polarization domains using Auger electron spectroscopy (AES) is presented. The domains of periodically poled samples are found to be differentiable using the peak amplitude of the Auger oxygen KLL transition, with -Z domains having a larger peak-amplitude as compared to +Z domains. The peak amplitude separation between domains is found to be dependent on the primary beam current, necessitating a balance between the insulating samples charging under the primary beam and achieving sufficient signal to noise in amplitude separation. AES amplitude-based domain characterization is demonstrated for fields of view (FOV) ranging from 1 𝜇m to 78 𝜇m. Domain spatial resolution of 91 nm is demonstrated at 1 𝜇m FOV.
  • Item
    Hundreds of Low-mass Active Galaxies in the Galaxy And Mass Assembly (GAMA) Survey
    (American Astronomical Society, 2022-09) Salehirad, Sheyda; Reines, Amy E.; Molina, Mallory
    We present an entirely new sample of 388 low-mass galaxies (M ⋆ ≤ 1010 M ⊙) that have spectroscopic signatures indicating the presence of massive black holes (BHs) in the form of active galactic nuclei (AGNs) or tidal disruption events. Of these, 70 have stellar masses in the dwarf galaxy regime with 108 ≲ M ⋆/M ⊙ ≲ 109.5. We identify the active galaxies by analyzing optical spectra of a parent sample of ∼23,000 low-mass emission-line galaxies in the Galaxy and Mass Assembly (GAMA) Survey Data Release 4, and employing four different diagnostics based on narrow emission-line ratios and the detection of high-ionization coronal lines. We find that 47 of the 388 low-mass active galaxies exhibit broad Hα in their spectra, corresponding to virial BH masses in the range M BH ∼ 105.0–7.7 M ⊙ with a median BH mass of 〈M BH〉 ∼ 106.2 M ⊙. Our sample extends to higher redshifts (z ≤ 0.3; 〈z〉 = 0.13) than previous samples of AGNs in low-mass/dwarf galaxies based on Sloan Digital Sky Survey spectroscopy, which can be attributed to the spectroscopic limit of GAMA being ∼2 mag deeper. Moreover, our multi-diagnostic approach has revealed low-mass active galaxies spanning a wide range of properties, from blue star-forming dwarfs to luminous “miniquasars” powered by low-mass BHs. As such, this work has implications for BH seeding and AGN feedback at low masses.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.