Scholarly Work - Center for Biofilm Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335
Browse
53 results
Search Results
Item Antimicrobial activity of naturally occurring phenols and derivatives against biofilm and planktonic bacteria(2019-10) Walsh, Danica J.; Livinghouse, Tom; Goeres, Darla M.; Mettler, Madelyn; Stewart, Philip S.Biofilm-forming bacteria present formidable challenges across diverse settings, and there is a need for new antimicrobial agents that are both environmentally acceptable and relatively potent against microorganisms in the biofilm state. The antimicrobial activity of three naturally occurring, low molecular weight, phenols, and their derivatives were evaluated against planktonic and biofilm Staphylococcus epidermidis and Pseudomonas aeruginosa. The structure activity relationships of eugenol, thymol, carvacrol, and their corresponding 2- and 4-allyl, 2-methallyl, and 2- and 4-n-propyl derivatives were evaluated. Allyl derivatives showed a consistent increased potency with both killing and inhibiting planktonic cells but they exhibited a decrease in potency against biofilms. This result underscores the importance of using biofilm assays to develop structure-activity relationships when the end target is biofilm.Item Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions(2019-07) Godoy-Santos, Fernanda; Pitts, Betsey; Stewart, Philip S.; Mantovani, Hilario C.Biofilms may enhance the tolerance of bacterial pathogens to disinfectants, biocides and other stressors by restricting the penetration of antimicrobials into the matrix-enclosed cell aggregates, which contributes to the recalcitrance of biofilm-associated infections. In this work, we performed real-time monitoring of the penetration of nisin into the interior of Staphylococcus aureus biofilms under continuous flow and compared the efficacy of this lantibiotic against planktonic and sessile cells of S. aureus . Biofilms were grown in Center for Disease Control (CDC) reactors and the spatial and temporal effects of nisin action on S. aureus cells were monitored by real-time confocal microscopy. Under continuous flow, nisin caused loss of membrane integrity of sessile cells and reached the bottom of the biofilms within ~20 min of exposure. Viability analysis using propidium iodide staining indicated that nisin was bactericidal against S. aureus biofilm cells. Time-kill assays showed that S. aureus viability reduced 6.71 and 1.64 log c.f.u. ml-1 for homogenized planktonic cells in exponential and stationary phase, respectively. For the homogenized and intact S. aureus CDC biofilms, mean viability decreased 1.25 and 0.50 log c.f.u. ml-1, respectively. Our results demonstrate the kinetics of biofilm killing by nisin under continuous-flow conditions, and shows that alterations in the physiology of S. aureus cells contribute to variations in sensitivity to the lantibiotic. The approach developed here could be useful to evaluate the antibiofilm efficacy of other bacteriocins either independently or in combination with other antimicrobials.Item Measuring Antimicrobial Efficacy against Biofilms: A MetaAnalysis(2019-05) Stewart, Philip S.; Parker, Albert E.Through a statistical meta-analysis of published data on antimicrobial efficacy against biofilms formed by two common bacterial species, it was concluded that the particular experimental method used is the most important factor determining the outcome of the test. An expected dose-response relationship (greater killing with higher doses or longer treatment times) was observed for data sets derived from a single method but was not observed when data from multiple studies using diverse methods were pooled. Method-specific properties such as the surface area/volume ratio, areal biofilm cell density, and microbial species were shown to influence quantitative measurements of biofilm killing. A better appreciation of the method characteristics that affect antibiofilm efficacy tests could aid decision-making related to investment in research and development and regulatory approvals for biofilm control strategies. The following recommendations are offered to those working in research and development related to biofilm control: (i) report the log reduction, surface area/volume ratio, and biofilm areal cell density; (ii) include data for a benchmark agent, making sure that this agent performs competitively at the dose tested; (iii) measure the dose-response relationship, i.e., make measurements at multiple treatment concentrations or dose durations; and (iv) use a standardized method in addition to research methods.Item Hypoxia arising from concerted oxygen consumption by neutrophils and microorganisms in biofilms(2018-06) Wu, Yilin; Klapper, Isaac; Stewart, Philip S.Infections associated with microbial biofilms are often found to involve hypoxic or anoxic conditions within the biofilm or its vicinity. To shed light on the phenomenon of local oxygen depletion, mathematical reaction-diffusion models were derived that integrated the two principal oxygen sinks, microbial respiration and neutrophil consumption. Three simple one-dimensional problems were analyzed approximating biofilm near an air interface as in a dermal wound or mucus layer, biofilm on an implanted medical device, or biofilm aggregates dispersed in mucus or tissue. In all three geometries considered, hypoxia at the biofilm–neutrophil interface or within the biofilm was predicted for a subset of plausible parameter values. The finding that oxygen concentration at the biofilm–neutrophil juncture can be diminished to hypoxic levels is biologically relevant because oxygen depletion will reduce neutrophil killing ability. The finding that hypoxia can readily establish in the interior of the biofilm is biologically relevant because this change will alter microbial metabolism and persistence.Item A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains(2019-03) Ferrer-Espada, Raquel; Shahrour, Hawraa; Pitts, Betsey; Stewart, Philip S.; Sánchez-Gómez, Susana; Martínez-de-Tejada, GuillermoResistance to antibiotics poses a major global threat according to the World Health Organization. Restoring the activity of existing drugs is an attractive alternative to address this challenge. One of the most efficient mechanisms of bacterial resistance involves the expression of efflux pump systems capable of expelling antibiotics from the cell. Although there are efflux pump inhibitors (EPIs) available, these molecules are toxic for humans. We hypothesized that permeability-increasing antimicrobial peptides (AMPs) could lower the amount of EPI necessary to sensitize bacteria to antibiotics that are efflux substrates. To test this hypothesis, we measured the ability of polymyxin B nonapeptide (PMBN), to synergize with antibiotics in the presence of EPIs. Assays were performed using planktonic and biofilm-forming cells of Pseudomonas aeruginosa strains overexpressing the MexAB-OprM efflux system. Synergy between PMBN and EPIs boosted azithromycin activity by a factor of 2,133 and sensitized P. aeruginosa to all tested antibiotics. This reduced several orders of magnitude the amount of inhibitor needed for antibiotic sensitization. The selected antibiotic-EPI-PMBN combination caused a 10 million-fold reduction in the viability of biofilm forming cells. We proved that AMPs can synergize with EPIs and that this phenomenon can be exploited to sensitize bacteria to antibiotics.Item Spatiotemporal mapping of oxygen in a microbially-impacted packed bed using 19F Nuclear magnetic resonance oximetry(2018-08) Simkins, Jeffrey W.; Stewart, Philip S.; Seymour, Joseph D.19F magnetic resonance has been used in the medical field for quantifying oxygenation in blood, tissues, and tumors. The 19F NMR oximetry technique exploits the affinity of molecular oxygen for liquid fluorocarbon phases, and the resulting linear dependence of 19F spin–lattice relaxation rate R1 on local oxygen concentration. Bacterial biofilms, aggregates of bacteria encased in a self-secreted matrix of extracellular polymers, are important in environmental, industrial, and clinical settings and oxygen gradients represent a critical determinant of biofilm function. However, measurement of oxygen distribution in biofilms and biofouled porous media is difficult. Here the ability of 19F NMR oximetry to accurately track oxygen profile development in microbial impacted packed bed systems without impacting oxygen transport is demonstrated. Time-stable and inert fluorocarbon containing particles are designed which act as oxygen reporters in porous media systems. Particles are generated by emulsifying and entrapping perfluorooctylbromide (PFOB) into alginate gel, resulting in oxygen-sensing alginate beads that are then used as the solid matrix of the packed bed. 19F oxygenation maps, when combined with 1H velocity maps, allow for insight into the interplay between fluid dynamics and oxygen transport phenomena in these complex biofouled systems. Spatial maps of oxygen consumption rate constants are calculated. The growth characteristics of two bacteria, a non-biofilm forming Escherichia coli and Staphylococcus epidermidis, a strong biofilm-former, are used to demonstrate the novel data provided by the method.Item Polynomial accelerated solutions to a LARGE Gaussian model for imaging biofilms: in theory and finite precision(2018-06) Parker, Albert E.; Pitts, Betsey; Lorenz, Lindsey A.; Stewart, Philip S.Three-dimensional confocal scanning laser microscope images offer dramatic visualizations of living biofilms before and after interventions. Here, we use confocal microscopy to study the effect of a treatment over time that causes a biofilm to swell and contract due to osmotic pressure changes. From these data (the video is provided in the supplementary materials), our goal is to reconstruct biofilm surfaces, to estimate the effect of the treatment on the biofilm’s volume, and to quantify the related uncertainties. We formulate the associated massive linear Bayesian inverse problem and then solve it using iterative samplers from large multivariate Gaussians that exploit well-established polynomial acceleration techniques from numerical linear algebra. Because of a general equivalence with linear solvers, these polynomial accelerated iterative samplers have known convergence rates, stopping criteria, and perform well in finite precision. An explicit algorithm is provided, for the first time, for an iterative sampler that is accelerated by the synergistic implementation of preconditioned conjugate gradient and Chebyshev polynomials.Item Analysis of Clostridium difficile biofilms: imaging and antimicrobial treatment(2018-01) James, Garth A.; Chesnel, L.; Boegli, Laura; Pulcini, Elinor D.; Fisher, Steve T.; Stewart, Philip S.BACKGROUND: Clostridium difficile, a spore-forming Gram-positive anaerobic bacillus, is the most common causative agent of healthcare-associated diarrhoea. Formation of biofilms may protect C. difficile against antibiotics, potentially leading to treatment failure. Furthermore, bacterial spores or vegetative cells may linger in biofilms in the gut causing C. difficile infection recurrence. OBJECTIVES: In this study, we evaluated and compared the efficacy of four antibiotics (fidaxomicin, surotomycin, vancomycin and metronidazole) in penetrating C. difficile biofilms and killing vegetative cells. METHODS: C. difficile biofilms grown initially for 48 or 72 h using the colony biofilm model were then treated with antibiotics at a concentration of 25 × MIC for 24 h. Vegetative cells and spores were enumerated. The effect of treatment on biofilm structure was studied by scanning electron microscopy (SEM). The ability of fidaxomicin and surotomycin to penetrate biofilms was studied using fluorescently tagged antibiotics. RESULTS: Both surotomycin and fidaxomicin were significantly more effective than vancomycin or metronidazole (P < 0.001) at killing vegetative cells in established biofilms. Fidaxomicin was more effective than metronidazole at reducing viable spore counts in biofilms (P < 0.05). Fluorescently labelled surotomycin and fidaxomicin penetrated C. difficile biofilms in < 1 h. After 24 h of treatment, SEM demonstrated that both fidaxomicin and surotomycin disrupted the biofilm structure, while metronidazole had no observable effect. CONCLUSIONS: Fidaxomicin is effective in disrupting C. difficile biofilms, killing vegetative cells and decreasing spore counts.Item Paired methods to measure biofilm killing and removal: a case study with Penicillin G treatment of Staphylococcus aureus biofilm(2018-03) Ausbacher, D.; Lorenz, Lindsey A.; Pitts, Betsey; Stewart, Philip S.; Goeres, Darla M.Biofilms are microbial aggregates that show high tolerance to antibiotic treatments in vitro and in vivo. Killing and removal are both important in biofilm control, therefore methods that measure these two mechanisms were evaluated in a parallel experimental design. Kill was measured using the single tube method (ASTM method E2871) and removal was determined by video microscopy and image analysis using a new treatment flow cell. The advantage of the parallel test design is that both methods used biofilm covered coupons harvested from a CDC biofilm reactor, a well-established and standardized biofilm growth method. The control Staphylococcus aureus biofilms treated with growth medium increased by 0 6 logs during a 3-h contact time. Efficacy testing showed biofilms exposed to 400 lmol l1 penicillin G decreased by only 0 3 logs. Interestingly, time-lapse confocal scanning laser microscopy revealed that penicillin G treatment dispersed the biofilm despite being an ineffective killing agent. In addition, no biofilm removal was detected when assays were performed in 96-well plates. These results illustrate that biofilm behaviour and impact of treatments can vary substantially when assayed by different methods. Measuring both killing and removal with well-characterized methods will be crucial for the discovery of new anti-biofilm strategies.Item Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis(2010) Folsom, James P.; Richards, Lee A.; Roe, Frank L.; Ehrlich, Garth D.; Parker, Albert E.; Mazurie, Aurélien J.; Stewart, Philip S.BACKGROUND: Transcriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared rankings for a priori identified physiological marker genes between the biofilm and published data sets.RESULTS: Biofilms tolerated exposure to antibiotics, harbored steep oxygen concentration gradients, and exhibited stratified and heterogeneous spatial patterns of protein synthetic activity. Transcriptional profiling was performed and the signal intensity of each transcript was ranked to gain insight into the physiological state of the biofilm population. Similar rankings were obtained from data sets published in the GEO database (www.ncbi.nlm.nih.gov/geo). By comparing the rank of genes selected as markers for particular physiological activities between the biofilm and comparator data sets, it was possible to infer qualitative features of the physiological state of the biofilm bacteria. These biofilms appeared, from their transcriptome, to be glucose nourished, iron replete, oxygen limited, and growing slowly or exhibiting stationary phase character. Genes associated with elaboration of type IV pili were strongly expressed in the biofilm. The biofilm population did not indicate oxidative stress, homoserine lactone mediated quorum sensing, or activation of efflux pumps. Using correlations with transcript ranks, the average specific growth rate of biofilm cells was estimated to be 0.08 h-1.CONCLUSIONS: Collectively these data underscore the oxygen-limited, slow-growing nature of the biofilm population and are consistent with antimicrobial tolerance due to low metabolic activity.