Scholarly Work - Center for Biofilm Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335
Browse
39 results
Search Results
Item Facultative and anaerobic consortia of haloalkaliphilic ureolytic micro-organisms capable of precipitating calcium carbonate(Wiley, 2019-08) Skorupa, Dana J.; Akyel, Arda; Fields, Matthew W.; Gerlach, RobinAims Development of biomineralization technologies has largely focused on microbially induced carbonate precipitation (MICP) via Sporosarcina pasteurii ureolysis; however, as an obligate aerobe, the general utility of this organism is limited. Here, facultative and anaerobic haloalkaliphiles capable of ureolysis were enriched, identified and then compared to S. pasteurii regarding biomineralization activities. Methods and Results Anaerobic and facultative enrichments for haloalkaliphilic and ureolytic micro‐organisms were established from sediment slurries collected at Soap Lake (WA). Optimal pH, temperature and salinity were determined for highly ureolytic enrichments, with dominant populations identified via a combination of high‐throughput SSU rRNA gene sequencing, clone libraries and Sanger sequencing of isolates. The enrichment cultures consisted primarily of Sporosarcina‐ and Clostridium‐like organisms. Ureolysis rates and direct cell counts in the enrichment cultures were comparable to the S. pasteurii (strain ATCC 11859) type strain. Conclusions Ureolysis rates from both facultatively and anaerobically enriched haloalkaliphiles were either not statistically significantly different to, or statistically significantly higher than, the S. pasteurii (strain ATCC 11859) rates. Work here concludes that extreme environments can harbour highly ureolytic active bacteria with potential advantages for large scale applications, such as environments devoid of oxygen. Significance and Impact of the Study The bacterial consortia and isolates obtained add to the possible suite of organisms available for MICP implementation, therefore potentially improving the economics and efficiency of commercial biomineralization.Item Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia(2018-04) Carlson, Ross P.; Beck, Ashley E.; Phalak, Poonam; Fields, Matthew W.; Gedeon, Tomas; Hanley, Luke; Harcombe, W. R.; Henson, Michael A.; Heys, Jeffrey J.Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning.Item Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris(2018-03) Franco, Lauren C.; Steinbeisser, Sadie; Zane, Grant M.; Wall, Judy D.; Fields, Matthew W.Desulfovibrio spp. are capable of heavy metal reduction and are well-studied systems for understanding metal fate and transport in anaerobic environments. Desulfovibrio vulgaris Hildenborough was grown under environmentally relevant conditions (i.e., temperature, nutrient limitation) to elucidate the impacts on Cr(VI) reduction on cellular physiology. Growth at 20 °C was slower than 30 °C and the presence of 50 μM Cr(VI) caused extended lag times for all conditions, but once growth resumed the growth rate was similar to that without Cr(VI). Cr(VI) reduction rates were greatly diminished at 20 °C for both 50 and 100 μM Cr(VI), particularly for the electron acceptor limited (EAL) condition in which Cr(VI) reduction was much slower, the growth lag much longer (200 h), and viability decreased compared to balanced (BAL) and electron donor limited (EDL) conditions. When sulfate levels were increased in the presence of Cr(VI), cellular responses improved via a shorter lag time to growth. Similar results were observed between the different resource (donor/acceptor) ratio conditions when the sulfate levels were normalized (10 mM), and these results indicated that resource ratio (donor/acceptor) impacted D. vulgaris response to Cr(VI) and not merely sulfate limitation. The results suggest that temperature and resource ratios greatly impacted the extent of Cr(VI) toxicity, Cr(VI) reduction, and the subsequent cellular health via Cr(VI) influx and overall metabolic rate. The results also emphasized the need to perform experiments at lower temperatures with nutrient limitation to make accurate predictions of heavy metal reduction rates as well as physiological states in the environment.Item Biofilm formation in Desulfovibrio vulgaris Hildenborough is dependent upon protein filaments(2007-11) Clark, M. E.; Edelmann, Richard E.; Duley, Matt L.; Wall, Judy D.; Fields, Matthew W.Desulfovibrio vulgaris Hildenborough is a gram-negative sulfate-reducing bacterium (SRB), and the physiology of SRBs can impact many anaerobic environments including radionuclide waste sites, oil reservoirs and metal pipelines. In an attempt to understand D. vulgaris as a population that can adhere to surfaces, D. vulgaris cultures were grown in a defined medium and analysed for carbohydrate production, motility and biofilm formation. Desulfovibrio vulgaris wild-type cells had increasing amounts of carbohydrate into stationary phase and approximately half of the carbohydrate remained internal. In comparison, a mutant that lacked the 200 kb megaplasmid, strain DeltaMP, produced less carbohydrate and the majority of carbohydrate remained internal of the cell proper. To assess the possibility of carbohydrate re-allocation, biofilm formation was investigated. Wild-type cells produced approximately threefold more biofilm on glass slides compared with DeltaMP; however, wild-type biofilm did not contain significant levels of exopolysaccharide. In addition, stains specific for extracellular carbohydrate did not reveal polysaccharide material within the biofilm. Desulfovibrio vulgaris wild-type biofilms contained long filaments as observed with scanning electron microscopy (SEM), and the biofilm-deficient DeltaMP strain was also deficient in motility. Biofilms grown directly on silica oxide transmission electron microscopy (TEM) grids did not contain significant levels of an exopolysaccharide matrix when viewed with TEM and SEM, and samples stained with ammonium molybdate also showed long filaments that resembled flagella. Biofilms subjected to protease treatments were degraded, and different proteases that were added at the time of inoculation inhibited biofilm formation. The data indicated that D. vulgaris did not produce an extensive exopolysaccharide matrix, used protein filaments to form biofilm between cells and silica oxide surfaces, and the filaments appeared to be flagella. It is likely that D. vulgaris used flagella for more than a means of locomotion to a surface, but also used flagella, or modified flagella, to establish and/or maintain biofilm structure.Item In situ bioreduction of uranium (VI) in situ and stability of immobilized uranium: Impact of dissolved oxygen(2007-08) Wu, Wei-Min; Carley, Jack; Luo, Jian; Ginder-Vogel, Matthew A.; Cardenas, Erick; Leigh, Mary Beth; Hwang, Chiachi; Kelly, Shelly D.; Ruan, Chuanmin; Wu, Liyou; Nostrand, Joy V.; Gentry, Terry J.; Lowe, K. A.; Mehlhorn, T. L.; Carroll, Sue L.; Luo, Wensui; Fields, Matthew W.; Gu, Baohua; Watson, David B.; Kemner, K. M.; Marsh, Terence; Tiedje, J. M.; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K.; Jardine, Phil M.; Criddle, Craig S.Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 microM uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2-day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agengy maximum contaminant limit (MCL) for drinking water (< 30/microg L(-1) or 0.126 microM). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L(-1)) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from < 0.13 to 2.0 microM at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. Atthe completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 microM. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp.Item Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation(2009-03) Elias, Dwayne A.; Mukhopadhyay, A.; Joachimiak, M. P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, J. D.; Wall, Judy D.Hypothetical (HyP) and conserved HyP genes account for >30% of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved HyP (9.5%) along with 887 HyP genes (24.4%). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 HyP and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC–MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. One thousand two hundred and twelve of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.Item Real-time molecular monitoring of chemical environment in obligate anaerobes during oxygen adaptive response(2009-06) Holman, Hoi-Ying N.; Wozei, Eleanor; Lin, Zhang; Comolli, Luis R.; Ball, David A.; Borglin, Sharon; Fields, Matthew W.; Hazen, Terry C.; Downing, Kenneth H.Determining the transient chemical properties of the intracellular environment can elucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms that enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier transform infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bond structures in their cellular water. We observed a sequence of well orchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.Item Bacterial community succession during in situ uranium bioremediation: spatial similarities along controlled flow paths(2009-01) Hwang, Chiachi; Wu, Wei-Min; Gentry, Terry J.; Carley, Jack; Corbin, Gail A.; Carroll, Sue L.; Watson, David B.; Jardine, Phil M.; Zhou, Jizhong; Criddle, Craig S.; Fields, Matthew W.Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5-year period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate and ethanol were strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate reducers and metal reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared with the population variation through canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bioreduction; however, the two biostimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.Item Systems biology guided by XCMS Online metabolomics(2017-04) Huan, Tao; Forsberg, Erica M.; Rinehart, Duane; Johnson, Caroline H.; Ivanisevic, Julijana; Benton, H. Paul; Fang, Mingliang; Aisporna, Aries E.; Hilmers, Brian; Poole, Farris L.; Thorgersen, Michael P.; Adams, Michael W. W.; Krantz, Gregory; Fields, Matthew W.; Robbins, Paul D.; Niedernhofer, Laura J.; Ideker, Trey; Majumder, Erica L.; Wall, Judy D.; Rattray, Nicholas J. W.; Goodacre, Royston; Lairson, Luke L.; Siuzdak, GaryItem Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed(2016-05) Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William; Fields, Matthew W.Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (− 67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42 −. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down hydrocarbons. Identifying microorganisms involved in coal degradation and the hydrogeochemical conditions that promote their activity is crucial to understanding and improving in situ CBM production.