Scholarly Work - Center for Biofilm Engineering

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335

Browse

Search Results

Now showing 1 - 10 of 30
  • Thumbnail Image
    Item
    Facultative and anaerobic consortia of haloalkaliphilic ureolytic micro-organisms capable of precipitating calcium carbonate
    (Wiley, 2019-08) Skorupa, Dana J.; Akyel, Arda; Fields, Matthew W.; Gerlach, Robin
    Aims Development of biomineralization technologies has largely focused on microbially induced carbonate precipitation (MICP) via Sporosarcina pasteurii ureolysis; however, as an obligate aerobe, the general utility of this organism is limited. Here, facultative and anaerobic haloalkaliphiles capable of ureolysis were enriched, identified and then compared to S. pasteurii regarding biomineralization activities. Methods and Results Anaerobic and facultative enrichments for haloalkaliphilic and ureolytic micro‐organisms were established from sediment slurries collected at Soap Lake (WA). Optimal pH, temperature and salinity were determined for highly ureolytic enrichments, with dominant populations identified via a combination of high‐throughput SSU rRNA gene sequencing, clone libraries and Sanger sequencing of isolates. The enrichment cultures consisted primarily of Sporosarcina‐ and Clostridium‐like organisms. Ureolysis rates and direct cell counts in the enrichment cultures were comparable to the S. pasteurii (strain ATCC 11859) type strain. Conclusions Ureolysis rates from both facultatively and anaerobically enriched haloalkaliphiles were either not statistically significantly different to, or statistically significantly higher than, the S. pasteurii (strain ATCC 11859) rates. Work here concludes that extreme environments can harbour highly ureolytic active bacteria with potential advantages for large scale applications, such as environments devoid of oxygen. Significance and Impact of the Study The bacterial consortia and isolates obtained add to the possible suite of organisms available for MICP implementation, therefore potentially improving the economics and efficiency of commercial biomineralization.
  • Thumbnail Image
    Item
    Microbial community changes during a toxic cyanobacterial bloom in an alkaline Hungarian lake
    (2018-08) Bell, Tisza A. S.; Feldoldi, Tamas; Sen-Kilic, Emel; Vasas, Gabor; Fields, Matthew W.; Peyton, Brent M.
    The Carpathian Basin is a lowland plain located mainly in Hungary. Due to the nature of the bedrock, alluvial deposits, and a bowl shape, many lakes and ponds of the area are characterized by high alkalinity. In this study, we characterized temporal changes in eukaryal and bacterial community dynamics with high throughput sequencing and relate the changes to environmental conditions in Lake Velence located in Fejer county, Hungary. The sampled Lake Velence microbial populations (algal and bacterial) were analyzed to identify potential correlations with other community members and environmental parameters at six timepoints over 6weeks in the Spring of 2012. Correlations between community members suggest a positive relationship between certain algal and bacterial populations (e.g. Chlamydomondaceae with Actinobacteria and Acidobacteria), while other correlations allude to changes in these relationships over time. During the study, high nitrogen availability may have favored non-nitrogen fixing cyanobacteria, such as the toxin-producing Microcystis aeruginosa, and the eutrophic effect may have been exacerbated by high phosphorus availability as well as the high calcium and magnesium content of the Carpathian Basin bedrock, potentially fostering exopolymer production and cell aggregation. Cyanobacterial bloom formation could have a negative environmental impact on other community members and potentially affect overall water quality as well as recreational activities. To our knowledge, this is the first prediction for relationships between photoautotrophic eukaryotes and bacteria from an alkaline, Hungarian lake.
  • Thumbnail Image
    Item
    Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia
    (2018-04) Carlson, Ross P.; Beck, Ashley E.; Phalak, Poonam; Fields, Matthew W.; Gedeon, Tomas; Hanley, Luke; Harcombe, W. R.; Henson, Michael A.; Heys, Jeffrey J.
    Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning.
  • Thumbnail Image
    Item
    Cr(VI) reduction and physiological toxicity are impacted by resource ratio in Desulfovibrio vulgaris
    (2018-03) Franco, Lauren C.; Steinbeisser, Sadie; Zane, Grant M.; Wall, Judy D.; Fields, Matthew W.
    Desulfovibrio spp. are capable of heavy metal reduction and are well-studied systems for understanding metal fate and transport in anaerobic environments. Desulfovibrio vulgaris Hildenborough was grown under environmentally relevant conditions (i.e., temperature, nutrient limitation) to elucidate the impacts on Cr(VI) reduction on cellular physiology. Growth at 20 °C was slower than 30 °C and the presence of 50 μM Cr(VI) caused extended lag times for all conditions, but once growth resumed the growth rate was similar to that without Cr(VI). Cr(VI) reduction rates were greatly diminished at 20 °C for both 50 and 100 μM Cr(VI), particularly for the electron acceptor limited (EAL) condition in which Cr(VI) reduction was much slower, the growth lag much longer (200 h), and viability decreased compared to balanced (BAL) and electron donor limited (EDL) conditions. When sulfate levels were increased in the presence of Cr(VI), cellular responses improved via a shorter lag time to growth. Similar results were observed between the different resource (donor/acceptor) ratio conditions when the sulfate levels were normalized (10 mM), and these results indicated that resource ratio (donor/acceptor) impacted D. vulgaris response to Cr(VI) and not merely sulfate limitation. The results suggest that temperature and resource ratios greatly impacted the extent of Cr(VI) toxicity, Cr(VI) reduction, and the subsequent cellular health via Cr(VI) influx and overall metabolic rate. The results also emphasized the need to perform experiments at lower temperatures with nutrient limitation to make accurate predictions of heavy metal reduction rates as well as physiological states in the environment.
  • Thumbnail Image
    Item
    Systems biology guided by XCMS Online metabolomics
    (2017-04) Huan, Tao; Forsberg, Erica M.; Rinehart, Duane; Johnson, Caroline H.; Ivanisevic, Julijana; Benton, H. Paul; Fang, Mingliang; Aisporna, Aries E.; Hilmers, Brian; Poole, Farris L.; Thorgersen, Michael P.; Adams, Michael W. W.; Krantz, Gregory; Fields, Matthew W.; Robbins, Paul D.; Niedernhofer, Laura J.; Ideker, Trey; Majumder, Erica L.; Wall, Judy D.; Rattray, Nicholas J. W.; Goodacre, Royston; Lairson, Luke L.; Siuzdak, Gary
  • Thumbnail Image
    Item
    Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed
    (2016-05) Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J. P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William; Fields, Matthew W.
    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (− 67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42 −. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situ bacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down hydrocarbons. Identifying microorganisms involved in coal degradation and the hydrogeochemical conditions that promote their activity is crucial to understanding and improving in situ CBM production.
  • Thumbnail Image
    Item
    Cultivation of a native alga for biomass and biofuel accumulation in coal bed methane production water
    (2016-11) Hodgkiss, Logan H.; Nagy, J.; Barnhart, Elliott P.; Cunningham, Alfred B.; Fields, Matthew W.
    Coal bed methane (CBM) production has resulted in thousands of ponds in the Powder River Basin of low-quality water in a water-challenged region. A green alga isolate, PW95, was isolated from a CBM production pond, and analysis of a partial ribosomal gene sequence indicated the isolate belongs to the Chlorococcaceae family. Different combinations of macro- and micronutrients were evaluated for PW95 growth in CBM water compared to a defined medium. A small level of growth was observed in unamended CBM water (0.15 g/l), and biomass increased (2-fold) in amended CBM water or defined growth medium. The highest growth rate was observed in CBM water amended with both N and P, and the unamended CBM water displayed the lowest growth rate. The highest lipid content (27%) was observed in CBM water with nitrate, and a significant level of lipid accumulation was not observed in the defined growth medium. Growth analysis indicated that nitrate deprivation coincided with lipid accumulation in CBM production water, and lipid accumulation did not increase with additional phosphorus limitation. The presented results show that CBM production wastewater can be minimally amended and used for the cultivation of a native, lipid-accumulating alga.
  • Thumbnail Image
    Item
    Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris
    (2010-05) He, Q.; He, Zhili; Joyner, D. C.; Joachimiak, M. P.; Price, M. N.; Yang, Zamin K.; Yen, Huei-Che B.; Hemme, C. L.; Chen, W.; Fields, Matthew W.; Stahl, David A.; Keasling, J. D.; Keller, M.; Arkin, Adam P.; Hazen, Terry C.; Wall, Judy D.; Zhou, Jizhong
    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70mM NaNO3 but not by 70mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.
  • Thumbnail Image
    Item
    Shewanella oneidensis MR-1 sensory box protein involved in aerobic and anoxic growth
    (2011-03) Sundararajan, Anitha; Kurowski, J.; Yan, T.; Klingeman, D. M.; Joachimiak, M. P.; Zhou, Jizhong; Naranjo, B.; Gralnick, J. A.; Fields, Matthew W.
    Although little is known of potential function for conserved signaling proteins, it is hypothesized that such proteins play important roles to coordinate cellular responses to environmental stimuli. In order to elucidate the function of a putative sensory box protein (PAS domains) in Shewanella oneidensis MR-1, the physiological role of SO3389 was characterized. The predicted open reading frame (ORF) encodes a putative sensory box protein that has PAS, GGDEF, and EAL domains, and an in-frame deletion mutant was constructed (ΔSO3389) with approximately 95% of the ORF deleted. Under aerated conditions, wild-type and mutant cultures had similar growth rates, but the mutant culture had a lower growth rate under static, aerobic conditions. Oxygen consumption rates were lower for mutant cultures (1.5-fold), and wild-type cultures also maintained lower dissolved oxygen concentrations under aerated growth conditions. When transferred to anoxic conditions, the mutant did not grow with fumarate, iron(III), or dimethyl sulfoxide (DMSO) as electron acceptors. Biochemical assays demonstrated the expression of different c-type cytochromes as well as decreased fumarate reductase activity in the mutant transferred to anoxic growth conditions. Transcriptomic studies showed the inability of the mutant to up-express and down-express genes, including c-type cytochromes (e.g., SO4047/SO4048, SO3285/SO3286), reductases (e.g., SO0768, SO1427), and potential regulators (e.g., SO1329). The complemented strain was able to grow when transferred from aerobic to anoxic growth conditions with the tested electron acceptors. The modeled structure for the SO3389 PAS domains was highly similar to the crystal structures of FAD-binding PAS domains that are known O2/redox sensors. Based on physiological, genomic, and bioinformatic results, we suggest that the sensory box protein, SO3389, is an O2/redox sensor that is involved in optimization of aerobic growth and transitions to anoxia in S. oneidensis MR-1.
  • Thumbnail Image
    Item
    Evaluation and remediation of bulk soap dispensers for biofilm
    (2012-01) Lorenz, Lindsey A.; Ramsay, Bradley D.; Goeres, Darla M.; Fields, Matthew W.; Zapka, Carrie A.; Macinga, David R.
    Recent studies evaluating bulk soap in public restroom soap dispensers have demonstrated up to 25% of open refillable bulk-soap dispensers were contaminated with ~6 log10(CFU ml-1) heterotrophic bacteria. In this study, plastic counter-mounted, plastic wall-mounted and stainless steel wall-mounted dispensers were analyzed for suspended and biofilm bacteria using total cell and viable plate counts. Independent of dispenser type or construction material, the bulk soap was contaminated with 4–7 log10(CFU ml-1) bacteria, while 4–6 log10(CFU cm-2) biofilm bacteria were isolated from the inside surfaces of the dispensers (n=6). Dispenser remediation studies, including a 10 min soak with 5000 mg 1-1 sodium hypochlorite, were then conducted to determine the efficacy of cleaning and disinfectant procedures against established biofilms. The testing showed that contamination of the bulk soap returned to pre-test levels within 7–14 days. These results demonstrate biofilm is present in contaminated bulk-soap dispensers and remediation studies to clean and sanitize the dispensers are temporary.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.