Scholarly Work - Center for Biofilm Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335
Browse
4 results
Search Results
Item Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low level waste site(2010-03) Field, E. K.; D'Imperio, Seth; Miller, A. R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.Low-level radioactive waste sites, including those at various U.S. Department of Energy (DOE) sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a non-radioactive model low-level waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more Operational Taxonomic Units (OTUs), and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the Fill (F) and Fill Waste (FW) layers and greater in the Wood Waste (WW) and Waste Clay (WC) layers. Principal coordinates analysis and lineage specific analysis determined that Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose degrading microorganisms suggests the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system.Item UO2+2 speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate(2010-04) VanEngelen, Michael R.; Field, E. K.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.In the present study, experiments were performed to investigate how representative cellulosic breakdown products, when serving as growth substrates under aerobic conditions, affect hexavalent uranyl cation (UO2+2 ) toxicity and bioaccumulation within a Pseudomonas sp. isolate (designated isolate A). Isolate A taken from the Cold Test Pit South (CTPS) region of the Idaho National Laboratory (INL), Idaho Falls, ID, USA. The INL houses low-level uranium-contaminated cellulosic material and understanding how this material, and specifically its breakdown products, affect U-bacterial interactions is important for understanding UO2+2 fate and mobility. Toxicity was modeled using a generalized Monod expression. Butyrate, dextrose, ethanol, and lactate served as growth substrates. The potential contribution of bicarbonate species present in high concentrations was also investigated and compared with toxicity and bioaccumulation patterns seen in low-bicarbonate conditions. Isolate A was significantly more sensitive to UO2+2 and accumulated significantly more UO2+2 in low-bicarbonate concentrations. In addition, UO2+2 growth inhibition and bioaccumulation varied depending on the growth substrate. In the presence of high bicarbonate concentrations, sensitivity to UO2+2 inhibition was greatly mitigated, and did not vary between the four substrates tested. The extent of UO2+2 accumulation was also diminished. The observed patterns were related to UO2+2 aqueous complexation, as predicted by MINTEQ (ver. 2.52) (Easton, PA, USA). In the low- bicarbonate medium, the presence of positively charged and unstable UO2+2 -hydroxide complexes explained both the greater sensitivity of isolate A to UO2+2, and the ability of isolate A to accumulate significant amounts of UO2+2 . The exclusive presence of negatively charged and stable UO2+2 -carbonate complexes in the high bi-carbonate medium explained the diminished sensitivity of isolate A to UO2+2 toxicity, and limited ability of isolate A to accumulate UO2+2 .Item Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6(2011-02) Sivaswamy, V.; Boyanov, M. I.; Peyton, Brent M.; Viamajala, Sridhar; Gerlach, Robin; Apel, William A.; Sani, Rajesh K.; Dohnalkova, Alice; Kemner, K. M.; Borch, ThomasRemoval of hexavalent uranium (U(VI)) from aqueous solution was studied using a gram-positive facultative anaerobe, Cellulomonas sp. strain ES6, under anaerobic, non-growth conditions in bicarbonate and PIPES buffers.Inorganic phosphate was released by cells during the experiments providing ligands for formation of insoluble U(VI) phosphates. Phosphate release was most probably the result of anaerobic hydrolysis of intracellular polyphosphates accumulated by ES6 during aerobic growth. Microbial reduction of U(VI) to U(IV) was also observed. However, the relative magnitudes of U(VI) removal by abiotic (phosphate-based) precipitation and microbial reduction depended on the buffer chemistry. In bicarbonate buffer, X-ray absorption fine structure (XAFS) spectroscopy showed that U in the solid phase was present primarily as a non-uraninite U(IV) phase, whereas in PIPES buffer, U precipitates consisted primarily of U(VI)-phosphate. In both bicarbonate and PIPES buffer, net release of cellular phosphate was measured to be lower than that observed in U-free controls suggesting simultaneous precipitation of U and PO₄³⠻. In PIPES, U(VI) phosphates formed a significant portion of U precipitates and mass balance estimates of U and P along with XAFS data corroborate this hypothesis. High-resolution transmission electron microscopy (HR-TEM) and energy dispersive X-ray spectroscopy (EDS) of samples from PIPES treatments indeed showed both extracellular and intracellular accumulation of U solids with nanometer sized lath structures that contained U and P. In bicarbonate, however, more phosphate was removed than required to stoichiometrically balance the U(VI)/U(IV) fraction determined by XAFS, suggesting that U(IV) precipitated together with phosphate in this system. When anthraquinone-2,6-disulfonate (AQDS), a known electron shuttle, was added to the experimental reactors, the dominant removal mechanism in both buffers was reduction to a non-uraninite U(IV) phase.Uranium immobilization by abiotic precipitation or microbial reduction has been extensively reported; however, the present work suggests that strain ES6 can remove U(VI) from solution simultaneously through precipitation with phosphate ligands and microbial reduction, depending on the environmental conditions. Cellulomonadaceae are environmentally relevant subsurface bacteria and here, for the first time, the presence of multiple U immobilization mechanisms within one organism is reported using Cellulomonas sp. strain ES6Item Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp. strain ES6(2011-09) Gerlach, Robin; Field, E. K.; Viamajala, Sridhar; Peyton, Brent M.; Apel, William A.; Cunningham, Alfred B.Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy’s Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.