Scholarly Work - Center for Biofilm Engineering
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/9335
Browse
10 results
Search Results
Item Medium pH and nitrate concentration effects on accumulation of triacylglycerol in two members of the chlorophyta(2010-12) Gardner, Robert D.; Peters, P.; Peyton, Brent M.; Cooksey, Keith E.Algal-derived biodiesel is of particular interest because of several factors including: the potential for a near-carbon-neutral life cycle, the prospective ability for algae to capture carbon dioxide generated from coal, and algae’s high per acre yield potential. Our group and others have shown that in nitrogen limitation, and for a single species of Chlorella, a rise in culture medium pH yields triacylglycerol (TAG) accumulation. To solidify and expand on these triggers, the influence and interaction of pH and nitrogen concentration on lipid production was further investigated on Chlorophyceae Scenedesmus sp. and Coelastrella sp. Growth was monitored optically and TAG accumulation was monitored by Nile red fluorescence and confirmed by gas chromatography. Both organisms grew in all treatments and TAG accumulation was observed by two distinct conditions: high pH and nitrogen limitation. The Scenedesmus sp. was shown to grow and produce lipids to a larger degree in alkaliphilic conditions (pH >9) and was used to further investigate the interplay between TAG accumulation from high pH and/or nitrate depletion. Results given here indicate that TAG accumulation per cell, monitored by Nile red fluorescence, correlates with pH at the time of nitrate depletion.Item Use of sodium bicarbonate to stimulate triacylglycerol accumulation in the chlorophyte Scenedesmus sp. and the diatom Phaeodactylum tricornutum(2012-10) Gardner, Robert D.; Cooksey, Keith E.; Mus, Florence; Macur, Richard E.; Moll, Karen M.; Eustance, E. O.; Carlson, Ross P.; Gerlach, Robin; Fields, Matthew W.; Peyton, Brent M.There is potential for algal-derived biofuel to help alleviate part of the world’s dependency on petroleum based fuels. However, research must still be done on strain selection, induction of triacylglycerol (TAG) accumulation, and fundamental algal metabolic studies, along with large-scale culturing techniques, harvesting, and biofuel/biomass processing. Here, we have advanced the knowledge on Scenedesmus sp. strain WC-1 by monitoring growth, pH, and TAG accumulation on a 14:10 light–dark cycle with atmospheric air or 5% CO2 in air (v/v) aeration. Under ambient aeration, there was a loss of pH-induced TAG accumulation, presumably due to TAG consumption during the lower culture pH observed during dark hours (pH 9.4). Under 5% CO2 aeration, the growth rate nearly doubled from 0.78 to 1.53 d−1, but the pH was circumneutral (pH 6.9) and TAG accumulation was minimal. Experiments were also performed with 5% CO2 during the exponential growth phase, which was then switched to aeration with atmospheric air when nitrate was close to depletion. These tests were run with and without the addition of 50 mM sodium bicarbonate. Cultures without added bicarbonate showed decreased growth rates with the aeration change, but there was no immediate TAG accumulation. The cultures with bicarbonate added immediately ceased cellular replication and rapid TAG accumulation was observed, as monitored by Nile Red fluorescence which has previously been correlated by gas chromatography to cellular TAG levels. Sodium bicarbonate addition (25 mM final concentration) was also tested with the marine diatom Phaeodactylum tricornutum strain Pt-1 and this organism also accumulated TAG.Item Comparison of CO2 and bicarbonate as inorganic carbon sources for triacylglycerol and starch accumulation in Chlamydomonas reinhardtii(2013-01) Gardner, Robert D.; Lohman, Egan J.; Gerlach, Robin; Cooksey, Keith E.; Peyton, Brent M.Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated because these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO2 (5%;v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO2 (0.04%;v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch-based to TAG-based carbon storage.Item An efficient and scalable extraction and quantification method for algal derived biofuel(2013-09) Lohman, Egan J.; Gardner, Robert D.; Halverson, L.; Macur, Richard E.; Peyton, Brent M.; Gerlach, RobinMicroalgae are capable of synthesizing a multitude of compounds including biofuel precursors and other high value products such as omega-3-fatty acids. However, accurate analysis of the specific compounds produced by microalgae is important since slight variations in saturation and carbon chain length can affect the quality, and thus the value, of the end product. We present a method that allows for fast and reliable extraction of lipids and similar compounds from a range of algae, followed by their characterization using gas chromatographic analysis with a focus on biodiesel-relevant compounds. This method determines which range of biologically synthesized compounds is likely responsible for each fatty acid methyl ester (FAME) produced; information that is fundamental for identifying preferred microalgae candidates as a biodiesel source. Traditional methods of analyzing these precursor molecules are time intensive and prone to high degrees of variation between species and experimental conditions. Here we detail a new method which uses microwave energy as a reliable, single-step cell disruption technique to extract lipids fromlive cultures of microalgae. After extractable lipid characterization (including lipid type (free fatty acids, mono-, di- or tri-acylglycerides) and carbon chain length determination) by GC–FID, the same lipid extracts are transesterified into FAMEs and directly compared to total biodiesel potential by GC–MS. This approach provides insight into the fraction of total FAMEs derived from extractable lipids compared to FAMEs derived fromthe residual fraction (i.e. membrane bound phospholipids, sterols, etc.). This approach can also indicate which extractable lipid compound, based on chain length and relative abundance, is responsible for each FAME. This method was tested on three species of microalgae: the marine diatom Phaeodactylum tricornutum, the model Chlorophyte Chlamydomonas reinhardtii, and the freshwater green alga Chlorella vulgaris. The method is shown to be robust, highly reproducible, and fast, allowing for multiple samples to be analyzed throughout the time course of culturing, thus providing time-resolved information regarding lipid quantity and quality. Total time from harvesting to obtaining analytical results is less than 2 h.Item Cellular cycling, carbon utilization, and photosynthetic oxygen production during bicarbonate-induced triacylglycerol accumulation in a Scenedesmus sp.(2013-11) Gardner, Robert D.; Lohman, Egan J.; Cooksey, Keith E.; Gerlach, Robin; Peyton, Brent M.Microalgae are capable of synthesizing high levels of triacylglycerol (TAG) which can be used as precursor compounds for fuels and specialty chemicals. Algal TAG accumulation typically occurs when cellular cycling is delayed or arrested due to nutrient limitation, an environmental challenge (e.g., pH, light, temperature stress), or by chemical addition. This work is a continuation of previous studies detailing sodium bicarbonate-induced TAG accumulation in the alkaline chlorophyte Scenedesmus sp. WC-1. It was found that upon sodium bicarbonate amendment, bicarbonate is the ion responsible for TAG accumulation; a culture amendment of approximately 15 mM bicarbonate was sufficient to arrest the cellular cycle and switch the algal metabolism from high growth to a TAG accumulating state. However, the cultures were limited in dissolved inorganic carbon one day after the amendment, suggesting additional carbon supplementation was necessary. Therefore, additional abiotic and biotic experimentation was performed to evaluate in- and out-gassing of CO2. Cultures to which 40–50 mM of sodium bicarbonate were added consumed DIC faster than CO2 could ingas during the light hours and total photosynthetic oxygen production was elevated as compared to cultures that did not receive supplemental inorganic carbon.Item Growth, nitrogen utilization and biodiesel potential for two chlorophytes grown on ammonium, nitrate or urea(2013-03) Eustance, E. O.; Gardner, Robert D.; Moll, Karen M.; Menicucci, Joseph A. Jr.; Gerlach, Robin; Peyton, Brent M.Nitrogen removal from wastewater by algae provides the potential benefit of producing lipids for biodiesel and biomass for anaerobic digestion. Further, ammonium is the renewable form of nitrogen produced during anaerobic digestion and one of the main nitrogen sources associated with wastewater. The wastewater isolates Scenedesmus sp. 131 and Monoraphidium sp. 92 were grown with ammonium, nitrate, or urea in the presence of 5 % CO2, and ammonium and nitrate in the presence of air to optimize the growth and biofuel production of these chlorophytes. Results showed that growth on ammonium, in both 5 % CO2 and air, caused a significant decrease in pH during the exponential phase, causing growth inhibition due to the low buffering capacity of the medium. Therefore, biological buffers and pH controllers were utilized to prevent a decrease in pH. Growth on ammonium with pH control (synthetic buffers or KOH dosing) demonstrated that growth (rate and yield), biodiesel production, and ammonium utilization, similar to nitrate- and urea-amended treatments, can be achieved if sufficient CO2 is available. Since the use of buffers is economically limited to laboratory-scale experiments, chemical pH control could bridge the gap encountered in the scale-up to industrial processes.Item Direct measurement and characterization of active photosynthesis zones inside wastewater remediating and biofuel producing microalgal biofilms(2014-03) Bernstein, Hans C.; Kessano, M.; Moll, Karen M.; Smith, Terrence; Gerlach, Robin; Carlson, Ross P.; Miller, Charles D.; Peyton, Brent M.; Cooksey, Keith E.; Gardner, Robert D.; Sims, R. C.Microalgal biofilm based technologies are of keen interest due to their high biomass concentrations and ability to utilize light and CO2. While photoautotrophic biofilms have long been used for wastewater remediation, biofuel production represents a relatively new and under-represented focus area. However, the direct measurement and characterization of fundamental parameters required for industrial control are challenging due to biofilm heterogeneity. This study evaluated oxygenic photosynthesis and respiration on two distinct microalgal biofilms cultured using a novel rotating algal biofilm reactor operated at field- and laboratory-scales. Clear differences in oxygenic photosynthesis and respiration were observed based on different culturing conditions, microalgal composition, light intensity and nitrogen availability. The cultures were also evaluated as potential biofuel synthesis strategies. Nitrogen depletion was not found to have the same effect on lipid accumulation compared to traditional planktonic microalgal studies. Physiological characterizations of these microalgal biofilms identify fundamental parameters needed to understand and control process optimization.Item Combining multiple nutrient stresses and bicarbonate addition to promote lipid accumulation in the diatom RGd-1(2014-07) Moll, Karen M.; Gardner, Robert D.; Eustance, E. O.; Gerlach, Robin; Peyton, Brent M.Algal biofuels represent a renewable, potentially viable, solution to mitigate transportation fuel demands. A novel diatom strain, RGd-1, isolated from Yellowstone National Park, produces high concentrations of lipids that can be converted to biodiesel. To increase the cell concentration and determine optimal conditions for growth, RGd-1 was grown without added Si, in the presence of four Si concentrations within the soluble range (0.5–2 mM), and one above the soluble range (2.5 mM). Medium Si concentrations and intracellular triacylglycerol (TAG) content were monitored daily by inductively coupled plasma mass spectrometry and Nile Red fluorescence, respectively (end-point TAG values were measured using gas chromatography). Si depletion with or without combined nitrate (NO3−) limitation was shown to induce TAG accumulation. Additionally, the effects of sodium bicarbonate (NaHCO3) supplementation were examined on cultures grown using two NO3− concentrations (2.94 and 1 mM NO3−), which also resulted in increased TAG accumulation. It was determined that utilizing a combination of two independent physiological stresses and HCO3− supplementation resulted in the highest total and per cell TAG accumulation.Item Carbon partitioning in lipids synthesized by Chlamydomonas reinhardtii when cultured under three unique inorganic carbon regimes(2014-07) Lohman, Egan J.; Gardner, Robert D.; Halverson, L.; Peyton, Brent M.; Gerlach, RobinInorganic carbon is a fundamental component for microalgal lipid biosynthesis. Understanding how the concentration and speciation of dissolved inorganic carbon (DIC) influences lipid metabolism in microalgae may help researchers optimize the production of these high value metabolites. Using relatively straight forward methods for quantifying free fatty acids (FFAs), mono- (MAG), di- (DAG), tri-acylglycerides (TAG), and total cellular fatty acids (FAME), lipid profiles over time were established for Chlamydomonas reinhardtii when grown under three unique inorganic carbon regimes. Specifically, cultures sparged with atmospheric air were compared to cultures which were sparged with 5% CO2 (v/v) and cultures supplemented with 50 mM NaHCO3 just prior to medium nitrogen depletion. All three conditions exhibited similar lipid profiles prior to nitrogen depletion in the medium, with FFA and MAG being the predominant lipid metabolites. However, these precursors were quickly reallocated into DAG and subsequently TAG after nitrogen depletion. C16 DAG did not accumulate significantly in any of the treatments, whereas the C18 DAG content increased throughout both exponential growth and stationary phase. C16 and C18 TAG began to accumulate after nitrogen depletion, with C16 TAG contributing the most to overall TAG content. C16 fatty acids exhibited a shift towards saturated C16 fatty acids after nitrogen depletion. Results provide insight into inorganic carbon partitioning into lipid compounds and how the organism's lipid metabolism changes due to N-deplete culturing and inorganic carbon source availability. The methodologies and findings presented here may be adapted to other organisms with high industrial relevance.Item Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms(2015-03) Kesaano, M.; Gardner, Robert D.; Moll, Karen M.; Lauchnor, Ellen G.; Gerlach, Robin; Peyton, Brent M.; Sims, R. C.Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake.