Scholarly Work - Plant Sciences & Plant Pathology
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/8870
Browse
4 results
Search Results
Item Characterization Factors to Assess Land Use Impacts on Pollinator Abundance in Life Cycle Assessment(American Chemical Society, 2023-02) Alejandre, Elizabeth M.; Scherer, Laura; Guinée, Jeroen B.; Aizen, Marcelo A.; Albrecht, Matthias; Balzan, Mario V.; Bartomeus, Ignasi; Bevk, Danilo; Burkle, Laura A.; Clough, Yann; Cole, Lorna J.; Delphia, Casey M.; Dicks, Lynn V.; Garratt, Michael P.D.; Kleijn, David; Kovács-Hostyánszki, Anikó; Mandelik, Yael; Paxton, Robert J.; Petanidou, Theodora; Potts, Simon; Sárospataki, Miklós; Schulp, Catharina J.E.; Stavrinides, Menelaos; Stein, Katharina; Stout, Jane C.; Szentgyörgyi, Hajnalka; Varnava, Androulla I.; Woodcock, Ben A.; van Bodegom, Peter M.While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.Item Recent and future declines of a historically widespread pollinator linked to climate, land cover, and pesticides(Proceedings of the National Academy of Sciences, 2023-01) Janousek, William M.; Douglas, Margaret R.; Cannings, Syd; Clément, Marion A.; Delphia, Casey M.; Everett, Jeffrey G.; Hatfield, Richard G.; Keinath, Douglas A.; Uhuad Koch, Jonathan B.; McCabe, Lindsie M.; Mola, John M.; Ogilvie, Jane E.; Rangwala, Imtiaz; Richardson, Leif L.; Rohde, Ashley T.; Strange, James P.; Tronstad, Lusha M.; Graves, Tabitha A.The acute decline in global biodiversity includes not only the loss of rare species, but also the rapid collapse of common species across many different taxa. The loss of pollinating insects is of particular concern because of the ecological and economic values these species provide. The western bumble bee ( Bombus occidentalis ) was once common in western North America, but this species has become increasingly rare through much of its range. To understand potential mechanisms driving these declines, we used Bayesian occupancy models to investigate the effects of climate and land cover from 1998 to 2020, pesticide use from 2008 to 2014, and projected expected occupancy under three future scenarios. Using 14,457 surveys across 2.8 million km 2 in the western United States, we found strong negative relationships between increasing temperature and drought on occupancy and identified neonicotinoids as the pesticides of greatest negative influence across our study region. The mean predicted occupancy declined by 57% from 1998 to 2020, ranging from 15 to 83% declines across 16 ecoregions. Even under the most optimistic scenario, we found continued declines in nearly half of the ecoregions by the 2050s and mean declines of 93% under the most severe scenario across all ecoregions. This assessment underscores the tenuous future of B. occidentalis and demonstrates the scale of stressors likely contributing to rapid loss of related pollinator species throughout the globe. Scaled-up, international species-monitoring schemes and improved integration of data from formal surveys and community science will substantively improve the understanding of stressors and bumble bee population trends.Item Wildflower Seed Sales as Incentive for Adopting Flower Strips for Native Bee Conservation: A Cost-Benefit Analysis(2019-07) Delphia, Casey M.; O'Neill, Kevin M.; Burkle, Laura A.Improving pollinator habitat on farmlands is needed to further wild bee conservation and to sustain crop pollination in light of relationships between global declines in pollinators and reductions in floral resources. One management strategy gaining much attention is the use of wildflower strips planted alongside crops to provide supplemental floral resources for pollinators. However, farmer adoption of pollinator-friendly strategies has been minimal, likely due to uncertainty about costs and benefits of providing non-crop flowering plants for bees. Over 3 yr, on four diversified farms in Montana, United States, we estimated the potential economic profit of harvesting and selling wildflower seeds collected from flower strips implemented for wild bee conservation, as an incentive for farmers to adopt this management practice. We compared the potential profitability of selling small retail seed packets versus bulk wholesale seed. Our economic analyses indicated that potential revenue from retail seed sales exceeded the costs associated with establishing and maintaining wildflower strips after the second growing season. A wholesale approach, in contrast, resulted in considerable net economic losses. We provide proof-of-concept that, under retail scenarios, the sale of native wildflower seeds may provide an alternative economic benefit that, to our knowledge, remains unexplored. The retail seed-sales approach could encourage greater farmer adoption of wildflower strips as a pollinator-conservation strategy in agroecosystems. The approach could also fill a need for regionally produced, native wildflower seed for habitat restoration and landscaping aimed at conserving native plants and pollinators.Item Bumble Bees (Hymenoptera: Apidae) of Montana(2017-09) Dolan, Amelia C.; Delphia, Casey M.; O'Neill, Kevin M.; Ivie, Michael A.Montana supports a diverse assemblage of bumble bees (Bombus Latreille) due to its size, landscape diversity, and location at the junction of known geographic ranges of North American species. We compiled the first inventory of Bombus species in Montana, using records from 25 natural history collections and labs engaged in bee research, collected over the past 125 years, as well as specimens collected specifically for this project during the summer of 2015. Over 12,000 records are included, with 28 species of Bombus now confirmed in the state. Based on information from nearby regions, four additional species are predicted to occur in Montana. Of the 28 species, Bombus bimaculatus Cresson and Bombus borealis Kirby are new state records. The presence of B. borealis was previously predicted, but the presence of B. bimaculatus in Montana represents a substantial extension of its previously reported range. Four additional \ eastern\" bumble bee species are recorded from the state, and three species pairs thought to replace one another from the eastern to western United States are now known to be sympatric in Montana. Additionally, our data are consistent with reported declines in populations of Bombus occidentalis Greene and Bombus suckleyi Greene, highlighting a need for targeted surveys of these two species in Montana."