Center for Biofilm Engineering (CBE)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/9334

At the Center for Biofilm Engineering (CBE), multidisciplinary research teams develop beneficial uses for microbial biofilms and find solutions to industrially relevant biofilm problems. The CBE was established at Montana State University, Bozeman, in 1990 as a National Science Foundation Engineering Research Center. As part of the MSU College of Engineering, the CBE gives students a chance to get a head start on their careers by working on research teams led by world-recognized leaders in the biofilm field.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Magnetic resonance analysis of capillary formation reaction front dynamics in alginate gels
    (2011-09) Maneval, James E.; Bernin, D.; Fabich, H. T.; Seymour, Joseph D.; Codd, Sarah L.
    The formation of heterogeneous structures in biopolymer gels is of current interest for biomedical applications and is of fundamental interest to understanding the molecular level origins of structures generated from disordered solutions by reactions. The cation-mediated physical gelation of alginate by calcium and copper is analyzed using magnetic resonance measurements of spatially resolved molecular dynamics during gel front propagation. Relaxation time and pulse-field gradient methods are applied to determine the impact of ion front motion on molecular translational dynamics. The formation of capillaries in alginate copper gels is correlated to changes in translational dynamics.
  • Thumbnail Image
    Item
    Nuclear magnetic resonance measurement of hydrodynamic dispersion in porous media: Preasymptotic dynamics, structure and nonequilibrium statistical mechanics
    (2012-10) Codd, Sarah L.; Seymour, Joseph D.
    Measurement of displacement time and length scale dependent dynamics by pulsed gradient spin echo nuclear magnetic resonance in porous media directly provides the preasymptotic hydrodynamic dispersion coefficient. This allows for comparison with nonequilibrium statistical mechanics models of hydrodynamics dispersion in porous media. Preasymptotic dispersion data and models provide characterization of porous media structure length scales relevant to transport and are related to the permeability and sample heterogeneity.
  • Thumbnail Image
    Item
    Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations
    (2013-05) Vogt, Sarah J.; Sanderlin, A. B.; Seymour, Joseph D.; Codd, Sarah L.
    Biofilm growth in porous media is difficult to study non-invasively due to the opaqueness and heterogeneity of the systems. Magnetic resonance is utilized to non-invasively study water dynamics within porous media. Displacement-relaxation correlation experiments were performed on fluid flow during biofilm growth in a model porous media of mono-dispersed polystyrene beads. The spin–spin T2 magnetic relaxation distinguishes between the biofilm phase and bulk fluid phase due to water–biopolymer interactions present in the biofilm, and the flow dynamics are measured using PGSE NMR experiments. By correlating these two measurements, the effects of biofilm growth on the fluid dynamics can be separated into a detailed analysis of both the biofilm phase and the fluid phase simultaneously within the same experiment. Within the displacement resolution of these experiments, no convective flow was measured through the biomass. An increased amount of longitudinal hydrodynamic dispersion indicates increased hydrodynamic mixing due to fluid channeling caused by biofilm growth. The effect of different biofilm growth conditions was measured by varying the strength of the bacterial growth medium.
  • Thumbnail Image
    Item
    Colloid particle transport in a microcapillary: NMR study of particle and suspending fluid dynamics
    (2016-10) Fridjonsson, E. O.; Seymour, Joseph D.
    Precise manipulation of the hydrodynamic interaction between particles is particularly important for operation of microfluidic devices. Shear-induced migration gives rise to dynamical patterns within the flow that have been observed in a range of systems. In this work NMR ‘active’ colloidal particles (a=1.25 µm) at volume fraction of 22% in an aqueous phase are flowed through a µ-capillary (R=126 µm) and the transport dynamics of the particle and suspending fluid phases are studied using dynamic NMR techniques. Simultaneous interrogation of shear rheology of the suspending fluid and particle phases of colloidal suspensions is presented. The dynamic behavior of the suspending fluid is shown to carry within it information about the structure of the colloidal particle ensembles on the time scales investigated (Δ=25 ms→250 ms) providing rich experimental data for further investigation and model verification. The importance of determining the particle concentration profile within μ-capillaries is explicitly demonstrated as shear induced migration causes significant concentration gradients to occur at strong flow conditions (i.e. Pep=270).
  • Thumbnail Image
    Item
    Magnetic resonance measurements of flow-path enhancement during supercritical CO2 injection in sandstone and carbonate rock cores
    (2014-10) Vogt, Sarah J.; Shaw, Colin A.; Maneval, James E.; Brox, Timothy I.; Skidmore, Mark L.; Codd, Sarah L.; Seymour, Joseph D.
    Sandstone and carbonate core samples were challenged with a two-phase supercritical CO2 and brine mixture to investigate the effects of chemical processes on the physical properties of these rocks during injection of CO2. The experiments were monitored in real-time for pressure, temperature, and volumetric rate discharge. Pore geometry and connectivity were characterized before and after each experimental challenge using magnetic resonance (MR) imaging and two-dimensional MR relaxation correlations. Quartz arenite sandstone cores were largely unaffected by the challenge with no measurable change in effective permeability at moderate and high temperatures (~50 °C and ~95 °C) or brine concentrations (~1 g/L and ~10 g/L). In contrast, a carbonate core sample showed evidence of significant dissolution leading to a six-fold increase in effective permeability. MR images and relaxation measurements revealed a marked increase in the volume and connectivity of pre-existing pore networks in the carbonate core. We infer that the increase in permeability in the carbonate core was enhanced by focused dissolution in the existing pore and fracture networks that enhanced fast-flow paths through the core.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.