Mathematical Sciences

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/48

Mathematical research at MSU is focused primarily on related topics in pure and applied mathematics. Research programs complement each other and are often applied to problems in science and engineering. Research in statistics encompasses a broad range of theoretical and applied topics. Because the statisticians are actively engaged in interdisciplinary work, much of the statistical research is directed toward practical problems. Mathematics education faculty are active in both qualitative and quantitative experimental research areas. These include teacher preparation, coaching and mentoring for in-service teachers, online learning and curriculum development.

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Dynamic processing of DOM: Insight from exometabolomics, fluorescence spectroscopy, and mass spectrometry
    (2018-06) Smith, Heidi J.; Tigges, Michelle M.; D'Andrilli, Juliana; Parker, Albert E.; Bothner, Brian; Foreman, Christine M.
    Dissolved organic matter (DOM) in freshwater environments is an important source of organic carbon, supporting bacterial respiration. Frozen environments cover vast expanses of our planet, with glaciers and ice-sheets storing upwards of 6 petagrams of organic carbon. It is generally believed that DOM liberated from ice stimulates downstream environments. If true, glacial DOM is an important component of global carbon cycling. However, coupling the release of DOM to microbial activity is challenging due to the molecular complexity of DOM and the metabolic connectivity within microbial communities. Using a single environmentally relevant organism, we demonstrate that processing of compositionally diverse DOM occurs, but, even though glacially derived DOM is chemically labile, it is unable to support sustained respiration. In view of projected changes in glacier DOM export, these findings imply that biogeochemical impacts on downstream environments will depend on the reactivity and heterogeneity of liberated DOM, as well as the timescale.
  • Thumbnail Image
    Item
    Symmetry breaking clusters in soft clustering decoding of neural codes
    (2010-02) Parker, Albert E.; Dimitrov, Alexander G.; Gedeon, Tomas
    Information-based distortion methods have been used successfully in the analysis of neural coding problems. These approaches allow the discovery of neural symbols and the corresponding stimulus space of a neuron or neural ensemble quantitatively, while making few assumptions about the nature of either the code or of relevant stimulus features. The neural codebook is derived by quantizing sensory stimuli and neural responses into a small set of clusters, and optimizing the quantization to minimize an information distortion function. The method of annealing has been used to solve the corresponding high-dimensional nonlinear optimization problem. The annealing solutions undergo a series of bifurcations, which we study using bifurcation theory in the presence of symmetries. In this contribution we describe these symmetry breaking bifurcations in detail, and indicate some of the consequences of the form of the bifurcations. In particular, we show that the annealing solutions break symmetry at pitchfork bifurcations, and that subcritical branches can exist. Thus, at a subcritical bifurcation, there are local information distortion solutions which are not found by the method of annealing. Since the annealing procedure is guaranteed to converge to a local solution eventually, the subcritical branch must turn and become optimal at some later saddle-node bifurcation, which we have shown occur generically for this class of problems. This implies that the rate distortion curve, while convex for noninformation-based distortion measures, is not convex for information-based distortion methods.
  • Thumbnail Image
    Item
    Micro-patterned surfaces reduce bacterial colonization and biofilm formation in vitro: Potential for enhancing endotracheal tube designs
    (2014-04) May, Rhea M.; Hoffman, Matt G.; Sogo, M.; Parker, Albert E.; O'Toole, George A.; Brennan, Anthony B.; Reddy, Shravanthi T.
    Ventilator-associated pneumonia (VAP) is a leading hospital acquired infection in intensive care units despite improved patient care practices and advancements in endotracheal tube (ETT) designs. The ETT provides a conduit for bacterial access to the lower respiratory tract and a substratum for biofilm formation, both of which lead to VAP. A novel microscopic ordered surface topography, the Sharklet micro-pattern, has been shown to decrease surface attachment of numerous microorganisms, and may provide an alternative strategy for VAP prevention if included on the surface of an ETT. To evaluate the feasibility of this micro-pattern for this application, the microbial range of performance was investigated in addition to biofilm studies with and without a mucin-rich medium to simulate the tracheal environment in vitro.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.