Ecology

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/44

The department's teaching and research addresses critical ecological and natural resources issues for Montana, but also tackles fundamental and applied questions around the globe. Undergraduate programs within the department include Fish & Wildlife Management and Ecology, Conservation Biology and Ecology, Organismal Biology, and Biology Teaching. Graduate programs (M.S. and P.hD.) include Fish & Wildlife Management or Biology and Biological Sciences and an intercollege PhD in Ecology and Environmental Sciences.

Browse

Search Results

Now showing 1 - 10 of 21
  • Thumbnail Image
    Item
    Evidence of an Absence of Inbreeding Depression in a Wild Population of Weddell Seals (Leptonychotes weddellii)
    (MDPI AG, 2023-02) Powell, John H.; Kalinowski, Steven T.; Taper, Mark L.; Rotella, Jay J.; Davis, Corey S.; Garrott, Robert A.
    Inbreeding depression can reduce the viability of wild populations. Detecting inbreeding depression in the wild is difficult; developing accurate estimates of inbreeding can be time and labor intensive. In this study, we used a two-step modeling procedure to incorporate uncertainty inherent in estimating individual inbreeding coefficients from multilocus genotypes into estimates of inbreeding depression in a population of Weddell seals (Leptonychotes weddellii). The two-step modeling procedure presented in this paper provides a method for estimating the magnitude of a known source of error, which is assumed absent in classic regression models, and incorporating this error into inferences about inbreeding depression. The method is essentially an errors-in-variables regression with non-normal errors in both the dependent and independent variables. These models, therefore, allow for a better evaluation of the uncertainty surrounding the biological importance of inbreeding depression in non-pedigreed wild populations. For this study we genotyped 154 adult female seals from the population in Erebus Bay, Antarctica, at 29 microsatellite loci, 12 of which are novel. We used a statistical evidence approach to inference rather than hypothesis testing because the discovery of both low and high levels of inbreeding are of scientific interest. We found evidence for an absence of inbreeding depression in lifetime reproductive success, adult survival, age at maturity, and the reproductive interval of female seals in this population.
  • Thumbnail Image
    Item
    Investigating diverse sources of variation in the amount of time Weddell seal ( Leptonychotes weddellii ) pups spend in the water during the lactation period
    (Wiley, 2022-07) Petch, Shane M.; Rotella, Jay J.; Link, William A.; Paterson, J. Terrill; Garrott, Robert A.
    Field observations suggest that time spent in the water by Weddell seal pups during lactation varies among individuals, which could yield important developmental tradeoffs. We analyzed data from 713 pups born to 419 different mothers over 9 years to evaluate total time in the water, age at first entry, and potential sources of variation using temperature loggers attached to the rear flipper of pups. Pups first entered the water at 11–29 days of age (M = 14.9) and spent 4–204 hr (M = 69.3) in the water by 30 days of age. Age at first entry was earlier for pups with higher birth mass and mothers of above average reproductive experience. Total time in the water was related to maternal identity and greater for female pups and for pups that had higher birth mass, mothers of intermediate age, mothers that skipped reproduction in the previous year, and for pups that first entered the water at younger ages. Phenotypic traits explain observed variation in the development of a key life history behavior in the Weddell seal. Strong individual variation in time spent in metabolically costly swimming and diving might lead to variation in growth, energy stores, and survival and fitness outcomes.
  • Thumbnail Image
    Item
    Evaluating wildlife translocations using genomics: A bighorn sheep case study
    (Wiley, 2020-12) Flesch, Elizabeth P.; Graves, Tabitha A.; Thomson, Jennifer M.; Proffitt, Kelly M.; Stephenson, Thomas R.; Garrott, Robert A.
    Wildlife restoration often involves translocation efforts to reintroduce species and supplement small, fragmented populations. We examined the genomic consequences of bighorn sheep (Ovis canadensis) translocations and population isolation to enhance understanding of evolutionary processes that affect population genetics and inform future restoration strategies. We conducted a population genomic analysis of 511 bighorn sheep from 17 areas, including native and reintroduced populations that received 0–10 translocations. Using the Illumina High Density Ovine array, we generated datasets of 6,155 to 33,289 single nucleotide polymorphisms and completed clustering, population tree, and kinship analyses. Our analyses determined that natural gene flow did not occur between most populations, including two pairs of native herds that had past connectivity. We synthesized genomic evidence across analyses to evaluate 24 different translocation events and detected eight successful reintroductions (i.e., lack of signal for recolonization from nearby populations) and five successful augmentations (i.e., reproductive success of translocated individuals) based on genetic similarity with the source populations. A single native population founded six of the reintroduced herds, suggesting that environmental conditions did not need to match for populations to persist following reintroduction. Augmentations consisting of 18–57 animals including males and females succeeded, whereas augmentations of two males did not result in a detectable genetic signature. Our results provide insight on genomic distinctiveness of native and reintroduced herds, information on the relative success of reintroduction and augmentation efforts and their associated attributes, and guidance to enhance genetic contribution of augmentations and reintroductions to aid in bighorn sheep restoration
  • Thumbnail Image
    Item
    Restoration Potential of Bighorn Sheep in a Prairie Region
    (2020-07) DeVoe, Jesse D.; Lowrey, Blake; Proffitt, Kelly M.; Garrott, Robert A.
    Efforts to recover Rocky Mountain bighorn sheep (Ovis canadensis canadensis) throughout western North America have had limited success with the majority of current populations remaining in small and isolated areas on a fraction of their historical range. Prairie environments with rugged topography throughout the Northern Great Plains ecoregion were historically occupied by relatively robust bighorn sheep populations. We predicted there is likely unrealized potential habitat for restoring bighorn sheep to these areas; however, relatively little attention has been devoted to identifying habitat in unoccupied prairie regions. We used global positioning system (GPS)-collar data collected from 43 female bighorn sheep in 2 populations located in the eastern Montana, USA, portion of the Northern Great Plains during 2014–2018 to estimate a population-level annual resource selection model and identify the important factors affecting bighorn sheep resource selection. We extrapolated model predictions across eastern Montana's prairie region and identified potential habitat to understand restoration potential and assist with future translocations of bighorn sheep. Resource selection of bighorn sheep was most strongly associated with terrain slope and ruggedness, tree canopy cover, and a normalized difference vegetation index metric. Within currently unoccupied areas of the historical range, the model extrapolation predicted 7,211 km2 of habitat, with most owned and managed by private landowners (44%), Bureau of Land Management (33%), and the United States Fish and Wildlife Service (15%). Our results provide an empirical evaluation of landscape covariates influencing resource selection of bighorn sheep occupying prairie environments and provide a habitat model that may be generalizable to other areas in the Northern Great Plains ecoregion. We demonstrate substantial potential for restoration opportunities of bighorn sheep in the Northern Great Plains ecoregion. Broad restoration of bighorn sheep across the ecoregion would likely require strong collaboration among and between public resource managers, private landowners, and livestock producers given the heterogeneous land ownership patterns, management strategies, and domestic sheep distributions.
  • Thumbnail Image
    Item
    Sources of Variation in Maternal Allocation in a Long‐lived Mammal
    (2020-06) Macdonald, Kaitlin R.; Rotella, Jay J.; Garrott, Robert A.; Link, William A.
    Life history theory predicts allocation of energy to reproduction varies with maternal age, but additional maternal features may be important to the allocation of energy to reproduction. We aimed to characterize age‐specific variation in maternal allocation and assess the relationship between maternal allocation and other static and dynamic maternal features. Mass measurements of 531 mothers and pups were used with Bayesian hierarchical models to explain the relationship between diverse maternal attributes and both the proportion of mass allocated by Weddell seal mothers, and the efficiency of mass transfer from mother to pup during lactation as well as the weaning mass of pups. Our results demonstrated that maternal mass was strongly and positively associated with the relative reserves allocated by a mother and a pup's weaning mass but that the efficiency of mass transfer declines with maternal parturition mass. Birthdate was positively associated with proportion mass allocation and pup weaning mass, but mass transfer efficiency was predicted to be highest at the mean birthdate. The relative allocation of maternal reserves declined with maternal age but the efficiency of mass transfer to pups increases, suggestive of selective disappearance of poor‐quality mothers. These findings highlight the importance of considering multiple maternal features when assessing variation in maternal allocation. Life history predictions were evaluated using a long‐term dataset to characterize age‐specific variation in maternal allocation and the relationship between maternal allocation and other maternal attributes. Results demonstrated evidence for selective disappearance in a long‐lived capital breeder and the importance of including additional maternal attributes when assessing these questions.
  • Thumbnail Image
    Item
    Simulation-based validation of spatial capture-recapture models: A case study using mountain lions
    (2019-04) Paterson, J. Terrill; Proffitt, Kelly M.; Jimenez, Ben; Rotella, Jay J.; Garrott, Robert A.
    Spatial capture-recapture (SCR) models have improved the ability to estimate densities of rare and elusive animals. However, SCR models have seldom been validated even as model formulations diversify and expand to incorporate new sampling methods and/or additional sources of information on model parameters. Information on the relationship between encounter probabilities, sources of additional information, and the reliability of density estimates, is rare but crucial to assessing reliability of SCR-based estimates. We used a simulation-based approach that incorporated prior empirical work to assess the accuracy and precision of density estimates from SCR models using spatially unstructured sampling. To assess the consequences of sparse data and potential sources of bias, we simulated data under six scenarios corresponding to three different levels of search effort and two levels of correlation between search effort and animal density. We then estimated density for each scenario using four models that included increasing amounts of information from harvested individuals and telemetry to evaluate the impact of additional sources of information. Model results were sensitive to the quantity of available information: density estimates based on low search effort were biased high and imprecise, whereas estimates based on high search effort were unbiased and precise. A correlation between search effort and animal density resulted in a positive bias in density estimates, though the bias decreased with increasingly informative datasets. Adding information from harvested individuals and telemetered individuals improved density estimates based on low and moderate effort but had negligible impact for datasets resulting from high effort. We demonstrated that density estimates from SCR models using spatially unstructured sampling are reliable when sufficient information is provided. Accurate density estimates can result if empirical-based simulations such as those presented here are used to develop study designs with appropriate amounts of effort and information sources.
  • Thumbnail Image
    Item
    Variation in the vital rates of an Antarctic marine predator: the role of individual heterogeneity
    (2018-10) Paterson, J. Terrill; Rotella, Jay J.; Link, William A.; Garrott, Robert A.
    Variation in life-history traits such as lifespan and lifetime reproductive output is thought to arise, in part, due to among-individual differences in the underlying probabilities of survival and reproduction. However, the stochastic nature of demographic processes can also generate considerable variation in fitness-related traits among otherwise-identical individuals. An improved understanding of life-history evolution and population dynamics therefore depends on evaluating the relative role of each of these processes. Here, we used a 33-yr data set with reproductive histories for 1,274 female Weddell seals from Erebus Bay, Antarctica, to assess the strength of evidence for among-individual heterogeneity in the probabilities of survival and reproduction, while accounting for multiple other sources of variation in vital rates. Our analysis used recent advances in Bayesian model selection techniques and diagnostics to directly compare model fit and predictive power between models that included individual effects on survival and reproduction to those that did not. We found strong evidence for costs of reproduction to both survival and future reproduction, with breeders having rates of survival and subsequent reproduction that were 3% and 6% lower than rates for non-breeders. We detected age-related changes in the rates of survival and reproduction, but the patterns differed for the two rates. Survival rates steadily declined from 0.92 at age 7 to 0.56 at the maximal age of 31yr. In contrast, reproductive rates increased from 0.68 at age 7 to 0.79 at age 16 and then steadily declined to 0.37 for the oldest females. Models that included individual effects explained more variation in observed life histories and had better estimated predictive power than those that did not, indicating their importance in understanding sources of variation among individuals in life-history traits. We found that among-individual heterogeneity in survival was small relative to that for reproduction. Our study, which found patterns of variation in vital rates that are consistent with a series of predictionsfrom life-history theory, is the first to provide a thorough assessment of variation in important vital rates for a long-lived, high-latitude marine mammal while taking full advantage of recent developments in model evaluation.
  • Thumbnail Image
    Item
    A Survey of Bacterial Respiratory Pathogens in Native and Introduced Mountain Goats ( Oreamnos americanus)
    (2018-06) Lowrey, Blake; Butler, Carson J.; Edwards, William H.; Wood, Mary E.; Dewey, Sarah R.; Fralick, Gary L.; Jennings-Gaines, Jessica E.; Killion, Halcyon J.; McWhirter, Douglas E.; Miyasaki, Hollie M.; Stewart, Shawn T.; White, Kevin S.; White, Patrick J.; Garrott, Robert A.
    In contrast to broad range expansion through translocations, many mountain goat ( Oreamnos americanus) populations have shown signs of decline. Recent documentation of pneumonia in mountain goats highlights their susceptibility to bacterial pathogens typically associated with bighorn sheep ( Ovis canadensis) epizootics. Respiratory pathogen communities of mountain goats are poorly characterized yet have important implications for management and conservation of both species. We characterized resident pathogen communities across a range of mountain goat populations as an initial step to inform management efforts. Between 2010 and 2017, we sampled 98 individuals within three regions of the Greater Yellowstone Area (GYA), with a smaller sampling effort in southeast Alaska, USA. Within the GYA, we detected Mycoplasma ovipneumoniae in two regions and we found at least two Pasteurellaceae species in animals from all regions. Mannheimia haemolytica was the only pathogen that we detected in southeast Alaska. Given the difficult sampling conditions, limited sample size, and imperfect detection, our failure to detect specific pathogens should be interpreted with caution. Nonetheless, respiratory pathogens within the GYA may be an important, yet underappreciated, cause of mountain goat mortality. Moreover, because of the strong niche overlap of bighorn sheep and mountain goats, interspecific transmission is an important concern for managers restoring or introducing mountain ungulates within sympatric ranges.
  • Thumbnail Image
    Item
    Wild horse demography: implications for sustainable management within economic constraints
    (2018-04) Garrott, Robert A.
    Management of wild horse (Equus ferus caballus) populations on western U.S. rangelands has been a challenge since horses were given legal protection through the passage of the Wild Free-Roaming Horses and Burros Act (WFRHba) in 1971. Horses have no effective predators, and unmanaged populations can double in 4-5 years and triple in 6-8 years. In order to meet the multiple-use paradigm for managing public rangelands, the Bureau of Land Management (BLM) has limited horse population growth through the periodic capture and removal of animals. While the WFRHBA mandates disposal of captured horses through placement into private ownership and prompt destruction of any excess animals, administrative restrictions have prohibited the destruction of healthy horses for nearly the entire history of the management program. This has led to an ever-increasing number of unwanted horses maintained in captivity, which has required increasing Congressional appropriations. There are currently 44,000 horses in long-term captivity at an annual cost of approximately $50 million. Recently, Congress has denied requests from the BLM for further funding increases to support continued growth in the number of horses in long-term maintenance, obligating the BLM to dramatically curtail population management. Horse numbers on public rangelands are now rapidly increasing, and if left minimally managed will exceed the capacity of rangeland resources, resulting in serious degradation of these public lands for all other uses and eventually will result in large numbers of horses dying of starvation and dehydration. Horse advocates suggest this management crisis can be solved with the aggressive use of contraceptive technologies. Limitations in efficacy and the logistics of administering contraceptives indicate that contraceptives can only slow population growth rates, but alone cannot decrease numbers. The BLM and other stakeholders are pressing for authorization to destroy excess horses but are facing public and Congressional opposition, with the potential that the status quo continues. A sustainable wild horse and burro (E. asinus; WhB) management program could be achieved by a combination of reducing the on-range population and treating adequate numbers of horses remaining on rangelands with contraceptives to reduce subsequent population growth rates. Under this scenario, the freeroaming horse population would produce a modest annual increment of horses, which could be removed and readily placed into private ownership. It has taken nearly half a century for the wild horse problem to reach this critical point, and any transition to a sustainable program will take time and additional resources. The fundamental challenge to developing a sustainable program will be solving the problem of the fate of excess horses. The policy decisions confronting us are historic, challenging, and controversial with a real danger of not finding the resolve to chart a new course for the WHB Program. If we fail and continue with the current policies, then horses, native wildlife, all stakeholders, and our public rangelands will pay a heavy price.
  • Thumbnail Image
    Item
    Respiratory pathogens and their association with population performance in Montana and Wyoming bighorn sheep populations
    (2018-11) Butler, Carson J.; Edwards, William H.; Paterson, J. Terrill; Proffitt, Kelly M.; Jennings-Gaines, Jessica E.; Killion, Halcyon J.; Wood, Mary E.; Ramsey, Jennifer M.; Almberg, Emily S.; Dewey, Sarah R.; McWhirter, Douglas E.; Courtemanch, Alyson B.; White, Patrick J.; Rotella, Jay J.; Garrott, Robert A.
    At the request of National Park Service resource managers, we began a study in 2000 to evaluate causes for the decline of the bighorn sheep (Ovis canadensis) population inhabiting Bighorn Canyon National Recreation Area (BICA), the Pryor Mountain Wild Horse Range, and surrounding state and U.S. Forest Service lands in Montana and Wyoming. Our study consisted of radio-collaring adult rams and ewes with mortality sensors to monitor adult mortalities, tracking ewes to determine pregnancy and lambing rates, habitat assessments to determine why the population was not expanding into what had been modeled using GIS methodology as suitable bighorn sheep habitat, measuring ungulate herbaceous consumption rates and herbaceous production to determine plant responses, and aerial and boat surveys to determine bighorn sheep population range and population dynamics (Schoenecker and others, this report). Two habitat suitability models were created and conducted (Gudorf, this report; Wockner and others, this report) using different methodologies, and comparisons made between the two. Herd population dynamics were modeled using the POP-II and POP-III programs (Roelle, this report), and a reassessment of ungulate exclosures that were established 8–10 years ago was conducted (Gerhardt, this report). The bighorn sheep population of the greater Bighorn Canyon National Recreation Area (BICA) was extirpated in the 1800s, and then reintroduced in 1973. The herd increased to a peak population of about 211 animals (Kissell and others, 1996), but then declined sharply in 1995 and 1996. Causes for the decline were unknown. Numbers have remained around 100 ± 20 animals since 1998. Previous modeling efforts determined what areas were suitable bighorn sheep habitat (Gudorf and others, 1996). We tried to determine why sheep were not using areas that were modeled as suitable or acceptable habitat, and to evaluate population dynamics of the herd.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.