College of Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27

The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor
    (2014-06) Khan, Mohiuddin M. T.; Danielsen, S.; Johansen, K.; Nelson, Sara E.; Camper, Anne K.
    Application of environmentally friendly enzymes to remove thin-film composite (TFC) reverse osmosis (RO) membrane biofoulants without changing the physico-chemical properties of the RO surface is a challenging and new concept. Eight enzymes from Novozyme A/S were tested using a commercially available biofouling-resistant TFC polyamide RO membrane (BW30, FilmTech Corporation, Dow Chemical Co.) without filtration in a rotating disk reactor system operated for 58 days. At the end of the operation, the accumulated biofoulants on the TFC RO surfaces were treated with the three best enzymes, Subtilisin protease and lipase; dextranase; and polygalacturonase (PG) based enzymes, at neutral pH (~7) and doses of 50, 100, and 150 ppm. Contact times were 18 and 36 h. Live/dead staining, epifluorescence microscopy measurements, and 5 µm thick cryo-sections of enzyme and physically treated biofouled membranes revealed that Subtilisin protease- and lipase-based enzymes at 100 ppm and 18 h contact time were optimal for removing most of the cells and proteins from the RO surface. Culturable cells inside the biofilm declined by more than five logs even at the lower dose (50 ppm) and shorter incubation period (18 h). Subtilisin protease- and lipase-based enzyme cleaning at 100 ppm and for 18 h contact time restored the hydrophobicity of the TFC RO surface to its virgin condition while physical cleaning alone resulted in a 50° increase in hydrophobicity. Moreover, at this optimum working condition, the Subtilisin protease- and lipase-based enzyme treatment of biofouled RO surface also restored the surface roughness measured with atomic force microscopy and the mass percentage of the chemical compositions on the TFC surface estimated with X-ray photoelectron spectroscopy to its virgin condition. This novel study will encourage the further development and application of enzymes to remove biofoulants on the RO surface without changing its surface properties.
  • Thumbnail Image
    Item
    Potential health risks from uranium in home well water: An investigation by the Apsaalooke (Crow) tribal research group
    (2015-03) Eggers, Margaret J.; Moore-Nall, Anita L.; Doyle, John T.; Lefthand, M. J.; Young, Sara L.; Bends, Ada L.; Crow Environmental Health Steering Committee; Camper, Anne K.
    Exposure to uranium can damage kidneys, increase long term risks of various cancers, and cause developmental and reproductive effects. Historically, home well water in Montana has not been tested for uranium. Data for the Crow Reservation from the United States Geological Survey (USGS) National Uranium Resource Evaluation (NURE) database showed that water from 34 of 189 wells tested had uranium over the Environmental Protection Agency (EPA) Maximum Contaminant Level (MCL) of 30 μg/L for drinking water. Therefore the Crow Water Quality Project included uranium in its tests of home well water. Volunteers had their well water tested and completed a survey about their well water use. More than 2/3 of the 97 wells sampled had detectable uranium; 6.3% exceeded the MCL of 30 μg/L. Wells downgradient from the uranium-bearing formations in the mountains were at highest risk. About half of all Crow families rely on home wells; 80% of these families consume their well water. An explanation of test results; associated health risks and water treatment options were provided to participating homeowners. The project is a community-based participatory research initiative of Little Big Horn College; the Crow Tribe; the Apsaalooke Water and Wastewater Authority; the local Indian Health Service Hospital and other local stakeholders; with support from academic partners at Montana State University (MSU) Bozeman.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.