College of Engineering

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/27

The College of Engineering at Montana State University will serve the State of Montana and the nation by fostering lifelong learning, integrating learning and discovery, developing and sharing technical expertise, and empowering students to be tomorrow's leaders.

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms
    (2001-07) Pitts, Betsey; Willse, Alan Ray; McFeters, Gordon A.; Hamilton, Martin A.; Zelver, Nick; Stewart, Philip S.
    Aims: The purpose of this study was to develop a laboratory biofilm growth reactor system that simulated the toilet bowl environment and which could be used for biocide efficacy testing. Methods and Results: A microbial biofilm reactor system incorporating intermittent flow and nutrient provision was designed. The reactor system was open to the air and was inoculated with organisms collected from toilet bowl biofilms. Once per hour, reactors were supplied with a nutrient solution for a period of 5 min, then flushed and refilled with tap water or tap water amended with chlorine. Quantitative measures of the rate and extent of biofilm accumulation were defined. Biofilm accumulated in untreated reactors to cell densities of 108 cfu cm–2 after approximately 1 week. Biofilm accumulation was also observed in reactors in the continuous presence of several milligrams per litre of free chlorine. Repeatability standard deviations for the selected efficacy measures were low, indicating high repeatability between experiments. Log reduction values of viable cell numbers were within ranges observed with standard suspension and hard surface disinfection tests. Biofilm accumulated in laboratory reactors approximately seven times faster than it did in actual toilet bowls. The same ranking was achieved in tests between laboratory biofilms and field-grown biofilms with three of the four measures, using three different concentrations of chlorine. Conclusions: This reactor system has been shown to simulate, in a repeatable way, the accumulation of bacterial biofilm that occurs in toilet bowls. The results demonstrate that this system can provide repeatable assays of the efficacy of chlorine against those biofilms. Significance and Impact of the Study: The laboratory biofilm reactor system described herein can be used to evaluate potential antimicrobial and antifouling treatments for control of biofilm formation in toilet bowls.
  • Thumbnail Image
    Item
    Use of Alternative Carrier Materials in AOAC Official Method SM2008.05, Efficacy of Liquid Sporicides Against Spores of Bacillus subtilis on a Hard, Nonporous Surface, Quantitative Three-Step Method
    (2010-01) Tomasino, S. F.; Rastogi, Vipin K.; Wallace, Lalena; Smith, Lisa S.; Hamilton, Martin A.; Pines, R. M.
    The quantitative Three-Step Method (TSM) for testing the efficacy of liquid sporicides against spores of Bacillus subtilis on a hard, nonporous surface (glass) was adopted as AOAC Official MethodSM 2008.05 in May 2008. The TSM uses 5x5x1 mm coupons (carriers) upon which spores have been inoculated and which are introduced into liquid sporicidal agent contained in a microcentrifuge tube. Following exposure of inoculated carriers and neutralization, spores are removed from carriers in three fractions (gentle washing, fraction A; sonication, fraction B; and gentle agitation, fraction C). Liquid from each fraction is serially diluted and plated on a recovery medium for spore enumeration. The counts are summed over the three fractions to provide the density (viable spores per carrier), which is log10-transformed to arrive at the log density. The log reduction is calculated by subtracting the mean log density for treated carriers from the mean log density for control carriers. This paper presents a single-laboratory investigation conducted to evaluate the applicability of using two porous carrier materials (ceramic tile and untreated pine wood) and one alternative nonporous material (stainless steel). Glass carriers were included in the study as the reference material. Inoculated carriers were evaluated against three commercially available liquid sporicides (sodium hypochlorite, a combination of peracetic acid and hydrogen peroxide, and glutaraldehyde), each at two levels of presumed efficacy (medium and high) to provide data for assessing the responsiveness of the TSM. Three coupons of each material were evaluated across three replications at each level; three replications of a control were required. Even though all carriers were inoculated with approximately the same number of spores, the observed counts of recovered spores were consistently higher for the nonporous carriers. For control carriers, the mean log densities for the four materials ranged from 6.63 for wood to 7.14 for steel. The pairwise differences between mean log densities, except for glass minus steel, were statistically significant (P < 0.001). The repeatability standard deviations (Sr) for the mean control log density per test were similar for the four materials, ranging from 0.08 for wood to 0.13 for tile. Spore recovery from the carrier materials ranged from approximately 20 to 70%: 20% (pine wood), 40% (ceramic tile), 55% (glass), and 70% (steel). Although the percent spore recovery from pine wood was significantly lower than that from other materials, the performance data indicate that the TSM provides a repeatable and responsive test for determining the efficacy of liquid sporicides on both porous and nonporous materials.
  • Thumbnail Image
    Item
    Performance of the AOAC use-dilution method with targeted modifications: Collaborative study
    (2012-11) Tomasino, S. F.; Parker, Albert E.; Hamilton, Martin A.; Hamilton, G. C.
    The U.S. Environmental Protection Agency (EPA), in collaboration with an industry work group, spearheaded a collaborative study designed to further enhance the AOAC use-dilution method (UDM). Based on feedback from laboratories that routinely conduct the UDM, improvements to the test culture preparation steps were prioritized. A set of modifications, largely based on culturing the test microbes on agar as specified in the AOAC hard surface carrier test method, were evaluated in a five-laboratory trial. The modifications targeted the preparation of the Pseudomonas aeruginosa test culture due to the difficulty in separating the pellicle from the broth in the current UDM. The proposed modifications (i.e., the modified UDM) were compared to the current UDM methodology for P. aeruginosa and Staphylococcus aureus. Salmonella choleraesuis was not included in the study. The goal was to determine if the modifications reduced method variability. Three efficacy response variables were statistically analyzed: the number of positive carriers, the log reduction, and the pass/fail outcome. The scope of the collaborative study was limited to testing one liquid disinfectant (an EPA-registered quaternary ammonium product) at two levels of presumed product efficacies, high and low. Test conditions included use of 400 ppm hard water as the product diluent and a 5% organic soil load (horse serum) added to the inoculum. Unfortunately, the study failed to support the adoption of the major modification (use of an agar-based approach to grow the test cultures) based on an analysis of method's variability. The repeatability and reproducibility standard deviations for the modified method were equal to or greater than those for the current method across the various test variables. However, the authors propose retaining the frozen stock preparation step of the modified method, and based on the statistical equivalency of the control log densities, support its adoption as a procedural change to the current UDM. The current UDM displayed acceptable responsiveness to changes in product efficacy; acceptable repeatability across multiple tests in each laboratory for the control counts and log reductions; and acceptable reproducibility across multiple laboratories for the control log density values and log reductions. Although the data do not support the adoption of all modifications, the UDM collaborative study data are valuable for assessing sources of method variability and a reassessment of the performance standard for the UDM.
  • Thumbnail Image
    Item
    Guidelines for the statistical analysis of a collaborative study of a laboratory method for testing disinfectant product performance
    (2013-09) Hamilton, Martin A.; Hamilton, G. C.; Goeres, Darla M.; Parker, Albert E.
    This paper presents statistical techniques suitable for analyzing a collaborative study (multilaboratory study or ring trial) of a laboratory disinfectant product performance test (DPPT) method. Emphasis is on the assessment of the repeatability, reproducibility, resemblance, and responsiveness of the DPPT method. The suggested statistical techniques are easily modified for application to a single laboratory study. The presentation includes descriptions of the plots and tables that should be constructed during initial examination of the data, including a discussion of outliers and QA checks. The statistical recommendations deal with evaluations of prevailing types of DPPTs, including both quantitative and semiquantitative tests. The presentation emphasizes tests in which the disinfectant treatment is applied to surface-associated microbes and the outcome is a viable cell count; however, the statistical guidelines are appropriate for suspension tests and other test systems. The recommendations also are suitable for disinfectant tests using any microbe (vegetative bacteria, virus, spores, etc.) or any disinfectant treatment. The descriptions of the statistical techniques include either examples of calculations based on published data or citations to published calculations. Computer code is provided in an appendix.
  • Thumbnail Image
    Item
    A statistical model for assessing performance standards for quantitative and semi-quantitative disinfectant test methods
    (2014-01) Parker, Albert E.; Hamilton, Martin A.; Tomasino, S. F.
    A performance standard for a disinfectant test method can be evaluated by quantifying the (Type I) pass-error rate for ineffective products and the (Type II) fail-error rate for highly effective products. This paper shows how to calculate these error rates for test methods where the log reduction in a microbial population is used as a measure of antimicrobial efficacy. The calculations can be used to assess performance standards that may require multiple tests of multiple microbes at multiple laboratories. Notably, the error rates account for among-laboratory variance of the log reductions estimated from a multilaboratory data set and the correlation among tests of different microbes conducted in the same laboratory. Performance standards that require that a disinfectant product pass all tests or multiple tests on average, are considered. The proposed statistical methodology is flexible and allows for a different acceptable outcome for each microbe tested, since, for example, variability may be different for different microbes. The approach can also be applied to semiquantitative methods for which product efficacy is reported as the number of positive carriers out of a treated set and the density of the microbes on control carriers is quantified, thereby allowing a log reduction to be calculated. Therefore, using the approach described in this paper, the error rates can also be calculated for semiquantitative method performance standards specified solely in terms of the maximum allowable number of positive carriers per test. The calculations are demonstrated in a case study of the current performance standard for the semiquantitative AOAC Use-Dilution Methods for Pseudomonas aeruginosa (964.02) and Staphylococcus aureus (955.15), which allow up to one positive carrier out of a set of 60 inoculated and treated carriers in each test. A simulation study was also conducted to verify the validity of the model's assumptions and accuracy. Our approach, easily implemented using the computer code provided, offers a quantitative decision-making tool for assessing a performance standard for any disinfectant test method for which log reductions can be calculated.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.